亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint identification of groundwater pollution source information, model parameters, and boundary conditions based on a novel ES-MDA with a wheel battle strategy

边界(拓扑) 边值问题 计算机科学 反演(地质) 鉴定(生物学) 地下水 数学优化 数学 地质学 岩土工程 数学分析 植物 生物 构造盆地 古生物学
作者
Zhenbo Chang,Wenxi Lu,Zhenbo Chang,Tao Zhang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:636: 131320-131320 被引量:3
标识
DOI:10.1016/j.jhydrol.2024.131320
摘要

Groundwater pollution source identification (GPSI) is an important prerequisite for pollution remediation and risk assessment. However, an accurate GPSI is usually difficult to achieve due to the need to simultaneously consider practical problems and theoretical research. For practical problems, the boundary conditions, especially the concentration boundary, are often given as known constants through prior information. However, in most practical situations, the boundary conditions are complex and cannot be accurately estimated in advance, which leads to the distortion of the final identification results. Therefore, this study focused on the concentration boundary, and first proposed to jointly identify three types of unknown variables (source information, model parameters, and boundary conditions) to ensure that the identification results had more practical value. For theoretical research, as the number of unknown variable types increases, the difficulty of solving the inverse problem often increases, which may lead to inaccurate inversion results. Thus, a novel ensemble smoother with multiple data assimilation (ES-MDA) with a wheel battle strategy was proposed, enhancing the identification accuracy. We designed two cases to verify the effectiveness and practicality of the above ideas: a low-dimensional Case 1 (including four different synthetic scenarios: three scenarios with unknown boundary conditions under three concentration boundary modes and a scenario with known boundary conditions) and a high-dimensional complex Case 2. Identifying the boundary conditions in GPSI was found to be of great significance. Compared to the standard ES-MDA method, the ES-MDA with a wheel battle strategy proposed here could improve the inversion accuracy, and had certain effectiveness and practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
doomwise发布了新的文献求助20
3秒前
JamesPei应助docyuchi采纳,获得10
6秒前
7秒前
8秒前
Leemyaaa完成签到 ,获得积分10
8秒前
依克发布了新的文献求助10
11秒前
深情的鞯完成签到,获得积分10
12秒前
阿兰完成签到 ,获得积分10
13秒前
jyy应助科研通管家采纳,获得10
14秒前
jyy应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
jyy应助科研通管家采纳,获得10
14秒前
monica发布了新的文献求助10
15秒前
梦华老师发布了新的文献求助10
24秒前
25秒前
心灵美砖头完成签到,获得积分10
26秒前
天天天才完成签到,获得积分10
30秒前
居蓝完成签到 ,获得积分10
30秒前
友好的一兰1111完成签到,获得积分20
31秒前
yzhilson完成签到 ,获得积分10
32秒前
自由易形关注了科研通微信公众号
41秒前
43秒前
123完成签到,获得积分10
46秒前
充电宝应助益气聪明张采纳,获得10
46秒前
48秒前
闪闪映易完成签到,获得积分10
50秒前
51秒前
自由易形发布了新的文献求助10
55秒前
MaxCKJ发布了新的文献求助30
59秒前
Owen应助一先生采纳,获得10
59秒前
自由易形完成签到,获得积分10
1分钟前
嗨Honey完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
阿君发布了新的文献求助10
1分钟前
肆月完成签到 ,获得积分10
1分钟前
1分钟前
66发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121554
关于积分的说明 9347855
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273