Joint identification of groundwater pollution source information, model parameters, and boundary conditions based on a novel ES-MDA with a wheel battle strategy

边界(拓扑) 边值问题 计算机科学 反演(地质) 鉴定(生物学) 地下水 数学优化 数学 地质学 岩土工程 数学分析 植物 生物 构造盆地 古生物学
作者
Zhenbo Chang,Wenxi Lu,Zhenbo Chang,Tao Zhang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:636: 131320-131320 被引量:3
标识
DOI:10.1016/j.jhydrol.2024.131320
摘要

Groundwater pollution source identification (GPSI) is an important prerequisite for pollution remediation and risk assessment. However, an accurate GPSI is usually difficult to achieve due to the need to simultaneously consider practical problems and theoretical research. For practical problems, the boundary conditions, especially the concentration boundary, are often given as known constants through prior information. However, in most practical situations, the boundary conditions are complex and cannot be accurately estimated in advance, which leads to the distortion of the final identification results. Therefore, this study focused on the concentration boundary, and first proposed to jointly identify three types of unknown variables (source information, model parameters, and boundary conditions) to ensure that the identification results had more practical value. For theoretical research, as the number of unknown variable types increases, the difficulty of solving the inverse problem often increases, which may lead to inaccurate inversion results. Thus, a novel ensemble smoother with multiple data assimilation (ES-MDA) with a wheel battle strategy was proposed, enhancing the identification accuracy. We designed two cases to verify the effectiveness and practicality of the above ideas: a low-dimensional Case 1 (including four different synthetic scenarios: three scenarios with unknown boundary conditions under three concentration boundary modes and a scenario with known boundary conditions) and a high-dimensional complex Case 2. Identifying the boundary conditions in GPSI was found to be of great significance. Compared to the standard ES-MDA method, the ES-MDA with a wheel battle strategy proposed here could improve the inversion accuracy, and had certain effectiveness and practicality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zack6119完成签到,获得积分10
1秒前
许雨青发布了新的文献求助10
1秒前
1秒前
随机发布了新的文献求助10
1秒前
1秒前
乐乐完成签到,获得积分10
2秒前
panhanfu发布了新的文献求助10
2秒前
蓝胖子完成签到,获得积分10
2秒前
fff完成签到,获得积分10
3秒前
大芒完成签到,获得积分10
3秒前
上官若男应助lily采纳,获得10
3秒前
李lll发布了新的文献求助10
3秒前
wanci应助ANG采纳,获得10
3秒前
hgf1997完成签到,获得积分10
4秒前
Song完成签到,获得积分10
4秒前
蓝天发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
斯文败类应助芷莯采纳,获得10
5秒前
欢呼的保温杯完成签到,获得积分10
5秒前
5秒前
核潜艇很优秀应助泯工采纳,获得10
5秒前
feiyang发布了新的文献求助10
5秒前
6秒前
yx完成签到 ,获得积分10
6秒前
深情安青应助大力哈密瓜采纳,获得10
7秒前
shuangyanli完成签到,获得积分10
7秒前
7秒前
真实的千柳完成签到,获得积分10
8秒前
8秒前
胖豆完成签到,获得积分10
8秒前
亦亦完成签到 ,获得积分10
8秒前
十一完成签到,获得积分10
8秒前
8秒前
张阳完成签到,获得积分10
8秒前
研友_Z1xNWn完成签到,获得积分10
9秒前
一叶扁舟完成签到,获得积分10
9秒前
9秒前
10秒前
JamesPei应助哆啦A梦采纳,获得10
10秒前
llly完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585147
求助须知:如何正确求助?哪些是违规求助? 4668950
关于积分的说明 14773671
捐赠科研通 4616972
什么是DOI,文献DOI怎么找? 2530364
邀请新用户注册赠送积分活动 1499158
关于科研通互助平台的介绍 1467659