已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge Enhanced Multi-intent Transformer Network for Recommendation

计算机科学 变压器 电气工程 工程类 电压
作者
Ding Zou,Wei Wei,Feida Zhu,Chuanyu Xu,Tao Zhang,C. W. Huo
标识
DOI:10.1145/3589335.3648296
摘要

Incorporating Knowledge Graphs into Recommendation has attracted growing attention in industry, due to the great potential of KG in providing abundant supplementary information and interpretability for the underlying models. However, simply integrating KG into recommendation usually brings in negative feedback in industry, due to the ignorance of the following two factors: i) users' multiple intents, which involve diverse nodes in KG. For example, in e-commerce scenarios, users may exhibit preferences for specific styles, brands, or colors. ii) knowledge noise, which is a prevalent issue in Knowledge Enhanced Recommendation (KGR) and even more severe in industry scenarios. The irrelevant knowledge properties of items may result in inferior model performance compared to approaches that do not incorporate knowledge. To tackle these challenges, we propose a novel approach named Knowledge Enhanced Multi-intent Transformer Network for Recommendation (KGTN), comprising two primary modules: Global Intents Modeling with Graph Transformer, and Knowledge Contrastive Denoising under Intents. Specifically, Global Intents with Graph Transformer focuses on capturing learnable user intents, by incorporating global signals from user-item-relation-entity interactions with a graph transformer, meanwhile learning intent-aware user/item representations. Knowledge Contrastive Denoising under Intents is dedicated to learning precise and robust representations. It leverages intent-aware representations to sample relevant knowledge, and proposes a local-global contrastive mechanism to enhance noise-irrelevant representation learning. Extensive experiments conducted on benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. And online A/B testing results on Alibaba large-scale industrial recommendation platform also indicate the real-scenario effectiveness of KGTN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fabius0351完成签到 ,获得积分10
4秒前
7秒前
吃书的猪完成签到,获得积分10
9秒前
老宇126完成签到,获得积分10
9秒前
奔跑西木完成签到 ,获得积分10
9秒前
小二郎应助雄i采纳,获得10
10秒前
14秒前
novia完成签到,获得积分10
14秒前
xhl完成签到 ,获得积分10
15秒前
16秒前
魔幻的雁完成签到 ,获得积分10
17秒前
17秒前
19秒前
zoujianqiao完成签到 ,获得积分10
20秒前
novia发布了新的文献求助20
20秒前
20秒前
顺心碧菡发布了新的文献求助10
21秒前
黄耀完成签到,获得积分20
22秒前
月潮共生完成签到 ,获得积分10
22秒前
22秒前
柯语雪完成签到 ,获得积分10
26秒前
活力芝麻发布了新的文献求助10
27秒前
32秒前
mei关闭了mei文献求助
34秒前
微笑的白柏完成签到,获得积分10
34秒前
柠檬味de_完成签到 ,获得积分10
35秒前
sherry完成签到 ,获得积分10
35秒前
吃菠萝的桃子完成签到 ,获得积分10
36秒前
阳阳杜发布了新的文献求助10
36秒前
qqdm完成签到 ,获得积分10
37秒前
科研通AI2S应助顺心碧菡采纳,获得10
37秒前
能干的语芙完成签到 ,获得积分10
38秒前
逃离地球完成签到 ,获得积分10
44秒前
Orange应助我就是KKKK采纳,获得10
46秒前
超帅锦程完成签到 ,获得积分10
47秒前
迷你的夜天完成签到 ,获得积分10
48秒前
彭于晏应助匡吉六个日采纳,获得10
50秒前
思源应助zzbbzz采纳,获得10
51秒前
洋芋发布了新的文献求助10
51秒前
DreamRunner0410完成签到 ,获得积分10
53秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335171
求助须知:如何正确求助?哪些是违规求助? 2964370
关于积分的说明 8613487
捐赠科研通 2643195
什么是DOI,文献DOI怎么找? 1447252
科研通“疑难数据库(出版商)”最低求助积分说明 670587
邀请新用户注册赠送积分活动 658921