反应扩散系统
吸引子
常微分方程
基本再生数
数学
简并能级
霍乱弧菌
指数稳定性
平滑度
稳态(化学)
持久性(不连续性)
扩散
稳定性理论
数学分析
物理
微分方程
生物
细菌
化学
非线性系统
人口
人口学
物理化学
岩土工程
社会学
工程类
热力学
量子力学
遗传学
作者
Zhenxiang Hu,Shengfu Wang,Linfei Nie
标识
DOI:10.58997/ejde.2023.08
摘要
We propose a cholera model with coupled reaction-diffusion equations and ordinary differential equations for discussing the effects of spatial heterogeneity, horizontal transmission, environmental viruses and phages on the spread of vibrio cholerae. We establish the well-posedness of this model which includes the existence of unique global positive solution, asymptotic smoothness of semiflow, and existence of a global attractor. The basic reproduction number R0 is obtained to describe the persistence and extinction of the disease. That is, the disease-free steady state is globally asymptotically stable for R0≤1, while it is unstable for R0>1. And, the disease is persistence and the model has the phage-free and phage-present endemic steady states in this case. Further, the global asymptotic stability of phage-free and phage-present endemic steady states are discussed for spatially homogeneous model. Finally, some numerical examples are displayed in order to illustrate the main theoretical results and our opening questions.
科研通智能强力驱动
Strongly Powered by AbleSci AI