无人机
计算机科学
水准点(测量)
计算机视觉
弹道
里程计
人工智能
惯性测量装置
实时计算
同时定位和映射
惯性参考系
机器人
移动机器人
地理
生物
物理
量子力学
遗传学
大地测量学
天文
作者
Ruocheng Li,Jingshuo Lyu,Aobo Wang,Rui Yu,Delong Wu,Bin Xin
出处
期刊:Unmanned Systems
[World Scientific]
日期:2023-04-23
卷期号:: 1-16
标识
DOI:10.1142/s230138502450033x
摘要
This paper presents a complete system for autonomous drone racing combining image recognition, depth mapping, visual-inertial odometry (VIO), and collision-free trajectory planning. The proposed system focuses on simple, robust, and computationally efficient techniques to enable onboard hardware applications. A loosely coupled visual-inertial localization system is devised, to ensure real-time and robust localization. A lightweight CPU-based detection module is designed, which consists of autonomous mapping and gate detection components. We also introduce a robust and efficient trajectory planner to generate smooth and collision-free trajectories in real-time. The proposed methods are tested extensively through benchmark comparisons and challenging indoor flights, while simulation results show the validness and effectiveness of our proposed system. We release our implementation as an open-source ROS-package.
科研通智能强力驱动
Strongly Powered by AbleSci AI