f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier BV]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
皮蛋努力科研完成签到 ,获得积分0
刚刚
BFish完成签到,获得积分10
刚刚
典雅大白菜真实的钥匙完成签到,获得积分10
1秒前
青柠完成签到,获得积分10
1秒前
尤总发布了新的文献求助10
1秒前
烟花应助明理的梦竹采纳,获得10
1秒前
1秒前
1秒前
2000pluv完成签到 ,获得积分10
1秒前
MOON完成签到,获得积分10
2秒前
勤奋的凌翠完成签到 ,获得积分10
2秒前
勤奋雨完成签到,获得积分10
2秒前
忐忑的方盒完成签到 ,获得积分10
3秒前
ColdPomelo完成签到,获得积分10
3秒前
法号胡来完成签到,获得积分10
3秒前
人不在高发布了新的文献求助10
3秒前
勤恳金针菇完成签到,获得积分10
3秒前
liu95完成签到 ,获得积分10
3秒前
WWW完成签到,获得积分10
3秒前
lq完成签到 ,获得积分10
4秒前
阿庆完成签到,获得积分10
5秒前
谦让的莆完成签到 ,获得积分10
5秒前
6秒前
乌日发布了新的文献求助20
6秒前
6秒前
唐泽雪穗应助米贝明z采纳,获得10
6秒前
led完成签到,获得积分10
7秒前
SYY完成签到,获得积分10
7秒前
NiL完成签到,获得积分10
7秒前
英俊安荷完成签到,获得积分10
7秒前
念姬完成签到 ,获得积分10
7秒前
墩墩焘完成签到 ,获得积分10
7秒前
stan完成签到,获得积分10
7秒前
汉堡包应助心随以动采纳,获得10
7秒前
Jenny完成签到,获得积分10
8秒前
xiangyiyi完成签到,获得积分20
8秒前
江山完成签到,获得积分10
8秒前
银色星辰完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067259
求助须知:如何正确求助?哪些是违规求助? 4289056
关于积分的说明 13361711
捐赠科研通 4108580
什么是DOI,文献DOI怎么找? 2249784
邀请新用户注册赠送积分活动 1255173
关于科研通互助平台的介绍 1187721