f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FireNow完成签到,获得积分10
刚刚
笨笨的秋蝶完成签到,获得积分10
刚刚
希望天下0贩的0应助王威采纳,获得10
刚刚
Waris完成签到 ,获得积分10
1秒前
1秒前
文艺点点完成签到,获得积分10
1秒前
SciGPT应助大胆的追命采纳,获得10
1秒前
syx发布了新的文献求助10
2秒前
2秒前
2秒前
念兹在兹完成签到,获得积分10
2秒前
呼啦啦发布了新的文献求助10
2秒前
土豆淀粉完成签到 ,获得积分10
3秒前
517完成签到,获得积分10
3秒前
Ysera发布了新的文献求助10
3秒前
4秒前
4秒前
燕子发布了新的文献求助10
4秒前
思源应助念心采纳,获得10
4秒前
5秒前
也许飞鸟能到那个木屋完成签到,获得积分10
5秒前
5秒前
5秒前
哎呀哎呀呀完成签到,获得积分10
6秒前
miao发布了新的文献求助20
6秒前
伯赏元彤完成签到,获得积分10
6秒前
小金今天自律了吗完成签到,获得积分10
6秒前
buyu发布了新的文献求助10
6秒前
彭于晏应助现代的无春采纳,获得10
7秒前
英吉利25发布了新的文献求助10
7秒前
lq完成签到,获得积分10
8秒前
8秒前
8秒前
炸鸡腿完成签到,获得积分10
8秒前
幽默身影发布了新的文献求助10
8秒前
8秒前
Shan发布了新的文献求助10
9秒前
若枫发布了新的文献求助10
9秒前
科研通AI6应助专注的枫叶采纳,获得10
9秒前
starlx0813完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005