f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人工智能小配方完成签到,获得积分10
2秒前
小五完成签到 ,获得积分20
3秒前
云无意发布了新的文献求助10
3秒前
黑豆子完成签到,获得积分10
4秒前
5秒前
Paul111完成签到,获得积分10
6秒前
jzt12138发布了新的文献求助10
7秒前
7秒前
青青闭上眼睛完成签到,获得积分10
9秒前
9秒前
英姑应助fufu采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
大豆子完成签到,获得积分10
13秒前
浮游应助青青闭上眼睛采纳,获得10
13秒前
13秒前
王贤平发布了新的文献求助10
13秒前
14秒前
16秒前
万能图书馆应助清脆安南采纳,获得10
16秒前
天真苑睐完成签到,获得积分10
17秒前
Leo完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
Azure完成签到,获得积分10
18秒前
Akim应助美好斓采纳,获得10
21秒前
遇见发布了新的文献求助10
21秒前
小豆子完成签到,获得积分10
23秒前
Jane完成签到 ,获得积分10
25秒前
26秒前
26秒前
28秒前
TL111发布了新的文献求助10
28秒前
28秒前
wsd关闭了wsd文献求助
29秒前
boaster完成签到,获得积分10
29秒前
30秒前
gsq完成签到,获得积分10
32秒前
热情的未来完成签到,获得积分10
33秒前
红豆子完成签到,获得积分10
33秒前
0000完成签到,获得积分10
33秒前
清脆安南发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109