f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助阿伟采纳,获得10
1秒前
丘比特应助Xin采纳,获得10
1秒前
小柴发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
3秒前
4秒前
今后应助jixia采纳,获得10
4秒前
23关闭了23文献求助
4秒前
搞点学术完成签到 ,获得积分10
5秒前
6秒前
7秒前
HANXIA完成签到,获得积分10
7秒前
7秒前
8秒前
研友_nxy9XZ完成签到,获得积分10
9秒前
9秒前
9秒前
cyz完成签到,获得积分10
10秒前
ChenChen发布了新的文献求助10
12秒前
苏小安发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
cyz发布了新的文献求助20
13秒前
旺旺饼干发布了新的文献求助10
14秒前
kyouu发布了新的文献求助10
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
张国强发布了新的文献求助10
18秒前
贪玩板栗发布了新的文献求助10
18秒前
小冰完成签到,获得积分10
18秒前
18秒前
依兰飞舞完成签到,获得积分10
19秒前
整齐乌发布了新的文献求助10
19秒前
23关闭了23文献求助
19秒前
20秒前
桐桐应助MET1采纳,获得10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465