f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助灿灿采纳,获得20
刚刚
英姑应助陈陈采纳,获得10
1秒前
3秒前
划分发布了新的文献求助20
3秒前
优秀笑柳发布了新的文献求助10
5秒前
可靠幻然完成签到 ,获得积分10
5秒前
5秒前
BK发布了新的文献求助10
6秒前
Ying发布了新的文献求助30
7秒前
梁真真完成签到 ,获得积分10
7秒前
7秒前
7秒前
小逗比发布了新的文献求助10
7秒前
张佳乐发布了新的文献求助10
8秒前
8秒前
日出发布了新的文献求助10
8秒前
10秒前
陈陈发布了新的文献求助10
12秒前
嘿嘿应助北北采纳,获得30
12秒前
Twonej给1111的求助进行了留言
12秒前
13秒前
英俊的铭应助111采纳,获得10
15秒前
Victor完成签到 ,获得积分10
17秒前
joxes发布了新的文献求助10
18秒前
18秒前
Simon_chat完成签到,获得积分10
20秒前
传奇3应助BK采纳,获得10
20秒前
锵锵锵应助安静初瑶采纳,获得10
21秒前
我是老大应助Lusteri采纳,获得10
21秒前
23秒前
24秒前
浮游应助djbj2022采纳,获得10
25秒前
29秒前
优秀笑柳完成签到,获得积分10
29秒前
丘比特应助trussie采纳,获得10
29秒前
Cherish完成签到,获得积分10
30秒前
111完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
Owen应助马上飞上宇宙采纳,获得10
31秒前
善学以致用应助jc采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741