f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
Kiry完成签到 ,获得积分10
1秒前
书是人类进步的阶梯完成签到 ,获得积分10
1秒前
pangguanzhe发布了新的文献求助10
3秒前
3秒前
pengivy完成签到,获得积分10
4秒前
哈利波特完成签到,获得积分10
5秒前
丘比特应助miao采纳,获得10
6秒前
羽羊周周完成签到,获得积分20
6秒前
6秒前
华盛顿关注了科研通微信公众号
6秒前
科研通AI6应助lankeren采纳,获得10
8秒前
时迁完成签到 ,获得积分10
9秒前
9秒前
领导范儿应助胡萝卜叶子采纳,获得10
9秒前
wanci应助害羞的诺言采纳,获得10
10秒前
12秒前
kate完成签到,获得积分10
13秒前
ECHO发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
朱春阳发布了新的文献求助10
17秒前
17秒前
moon发布了新的文献求助30
18秒前
BowieHuang应助从容的方盒采纳,获得10
18秒前
19秒前
19秒前
伶俐的静柏完成签到,获得积分10
23秒前
华盛顿发布了新的文献求助10
24秒前
搜集达人应助天一采纳,获得10
24秒前
miao发布了新的文献求助10
24秒前
24秒前
唐小鸭完成签到,获得积分10
24秒前
Ava应助朱春阳采纳,获得10
25秒前
王某人完成签到 ,获得积分10
25秒前
26秒前
26秒前
我无线用咯完成签到,获得积分10
26秒前
求助人员发布了新的文献求助10
28秒前
王DD完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600865
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843611
捐赠科研通 4678481
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241