f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嗯嗯完成签到 ,获得积分10
1秒前
2秒前
好耶完成签到,获得积分10
3秒前
孤岛完成签到,获得积分10
3秒前
瘦瘦冰凡发布了新的文献求助10
3秒前
所所应助YYMY2022采纳,获得10
3秒前
Visy完成签到,获得积分10
3秒前
深情安青应助X_X采纳,获得10
5秒前
好耶发布了新的文献求助20
6秒前
8秒前
方法完成签到,获得积分10
9秒前
坚定思天完成签到,获得积分10
9秒前
10秒前
一分发布了新的文献求助10
11秒前
11秒前
隐形曼青应助llll采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
失眠呆呆鱼完成签到 ,获得积分10
11秒前
13秒前
好多鱼爱学习完成签到 ,获得积分10
14秒前
拓木幸子完成签到,获得积分10
14秒前
正直芫发布了新的文献求助10
16秒前
16秒前
ossantu完成签到,获得积分10
16秒前
sxm1004完成签到,获得积分10
16秒前
sky发布了新的文献求助10
17秒前
llll完成签到,获得积分10
17秒前
都哥发布了新的文献求助10
18秒前
19秒前
弋沨完成签到,获得积分10
19秒前
20秒前
韩业民完成签到,获得积分10
20秒前
万能图书馆应助袁不评采纳,获得10
20秒前
21秒前
Visy发布了新的文献求助10
21秒前
22秒前
无限煎饼发布了新的文献求助10
22秒前
一只小学弱完成签到,获得积分10
23秒前
嗡嗡嗡完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653053
求助须知:如何正确求助?哪些是违规求助? 4789236
关于积分的说明 15062819
捐赠科研通 4811737
什么是DOI,文献DOI怎么找? 2574034
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488422