f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻德地发布了新的文献求助10
刚刚
qazwsx发布了新的文献求助10
刚刚
慕青应助rationality采纳,获得10
1秒前
缥缈的冷雪完成签到,获得积分10
1秒前
陈明健发布了新的文献求助10
1秒前
1秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
华仔应助建建采纳,获得10
5秒前
科研狗完成签到,获得积分10
5秒前
5秒前
坚强夜白完成签到,获得积分10
6秒前
7秒前
7秒前
李爱国应助SIMON采纳,获得10
7秒前
快乐滑板应助真实的火车采纳,获得10
7秒前
小蘑菇应助平常的麦片采纳,获得10
7秒前
eee完成签到,获得积分10
8秒前
9秒前
9秒前
科研通AI6应助小帅采纳,获得10
9秒前
9秒前
霸波儿奔完成签到,获得积分10
9秒前
BowieHuang应助缥缈的冷雪采纳,获得30
9秒前
10秒前
10秒前
成长完成签到,获得积分10
10秒前
10秒前
10秒前
科研通AI6.1应助卡皮巴拉采纳,获得10
11秒前
12秒前
青青发布了新的文献求助10
12秒前
小米发布了新的文献求助10
12秒前
saybia发布了新的文献求助10
12秒前
13秒前
13秒前
麦米米发布了新的文献求助10
13秒前
大个应助罗子超采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761669
求助须知:如何正确求助?哪些是违规求助? 5531072
关于积分的说明 15400289
捐赠科研通 4897942
什么是DOI,文献DOI怎么找? 2634588
邀请新用户注册赠送积分活动 1582751
关于科研通互助平台的介绍 1537985