已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
底层特律应助科研通管家采纳,获得10
刚刚
Tanya47应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
烟花应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
刚刚
Tanya47应助科研通管家采纳,获得10
刚刚
dusk完成签到 ,获得积分10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
1秒前
抗氧剂完成签到,获得积分10
1秒前
2秒前
JamesPei应助七宝大当家采纳,获得10
5秒前
6秒前
抗氧剂发布了新的文献求助10
6秒前
llk完成签到 ,获得积分10
6秒前
可可钳完成签到,获得积分10
11秒前
11秒前
本本完成签到 ,获得积分10
11秒前
科研通AI2S应助Ye采纳,获得10
11秒前
12秒前
莘莘学子完成签到 ,获得积分10
13秒前
14秒前
简单完成签到 ,获得积分10
14秒前
慕青应助安详怀亦采纳,获得10
15秒前
JINFA发布了新的文献求助10
16秒前
17秒前
18秒前
Rdx发布了新的文献求助10
18秒前
20秒前
Yxs发布了新的文献求助10
20秒前
喜悦诗翠完成签到 ,获得积分10
20秒前
21秒前
Ye完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759