f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier BV]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助ZZD采纳,获得10
1秒前
wendy完成签到,获得积分10
3秒前
cai完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
SciGPT应助追忆采纳,获得10
5秒前
5秒前
1234发布了新的文献求助10
5秒前
Angow发布了新的文献求助10
5秒前
andrele应助felix采纳,获得10
5秒前
Rondab应助felix采纳,获得10
5秒前
yznfly应助felix采纳,获得30
5秒前
脑洞疼应助魔法宵夜采纳,获得10
5秒前
ZZD完成签到,获得积分20
5秒前
6秒前
123发布了新的文献求助10
9秒前
爆米花应助cai采纳,获得10
10秒前
辛勤笑旋发布了新的文献求助10
12秒前
ZZD发布了新的文献求助10
12秒前
Shan完成签到 ,获得积分10
12秒前
13秒前
18秒前
又又妈妈完成签到,获得积分10
19秒前
Hello应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
ED应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得100
20秒前
赘婿应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
棋士应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
自由伊发布了新的文献求助10
24秒前
gy发布了新的文献求助10
24秒前
车秋寒完成签到,获得积分10
24秒前
辛勤笑旋完成签到,获得积分10
25秒前
风味烤羊腿完成签到,获得积分0
25秒前
研友_8DAv0L发布了新的文献求助10
26秒前
28秒前
椰子树完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689