亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助三花花花采纳,获得10
4秒前
9秒前
杭采蓝完成签到 ,获得积分10
13秒前
汉堡包应助科研通管家采纳,获得10
21秒前
花痴的骁完成签到 ,获得积分10
22秒前
所所应助花生采纳,获得10
27秒前
勤恳慕蕊完成签到 ,获得积分10
28秒前
小马甲应助kanwenxian采纳,获得10
30秒前
42秒前
三花花花发布了新的文献求助10
48秒前
粽子完成签到,获得积分10
1分钟前
1分钟前
JaydeH发布了新的文献求助30
1分钟前
三花花花完成签到,获得积分10
1分钟前
莱芙完成签到 ,获得积分10
1分钟前
obito完成签到,获得积分10
1分钟前
JaydeH完成签到,获得积分10
1分钟前
打打应助GJG采纳,获得10
1分钟前
1分钟前
1分钟前
GJG完成签到,获得积分10
2分钟前
GJG发布了新的文献求助10
2分钟前
2分钟前
喜喜发布了新的文献求助10
2分钟前
市井小民完成签到,获得积分10
2分钟前
2分钟前
laihuimin完成签到,获得积分10
2分钟前
3分钟前
风中的安青完成签到 ,获得积分10
3分钟前
4分钟前
sue完成签到 ,获得积分10
4分钟前
香蕉觅云应助nZk采纳,获得10
4分钟前
4分钟前
5分钟前
immortal完成签到,获得积分10
5分钟前
immortal发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Joeswith完成签到,获得积分10
5分钟前
kanwenxian发布了新的文献求助10
5分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068088
求助须知:如何正确求助?哪些是违规求助? 2722059
关于积分的说明 7476020
捐赠科研通 2369097
什么是DOI,文献DOI怎么找? 1256150
科研通“疑难数据库(出版商)”最低求助积分说明 609490
版权声明 596815