f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34Kenny完成签到,获得积分10
1秒前
1秒前
可爱的函函应助小爽采纳,获得10
3秒前
iconcrete完成签到,获得积分0
4秒前
4秒前
lym完成签到 ,获得积分20
7秒前
hilknk发布了新的文献求助10
7秒前
8秒前
江风海韵完成签到,获得积分10
11秒前
11秒前
一枚研究僧举报tang求助涉嫌违规
11秒前
张伯猪发布了新的文献求助30
13秒前
蜂蜜柚子完成签到 ,获得积分10
14秒前
饱满烙完成签到 ,获得积分10
15秒前
多情怜蕾完成签到,获得积分10
16秒前
16秒前
噜噜晓完成签到 ,获得积分10
16秒前
19秒前
xwzz完成签到,获得积分10
19秒前
juwish完成签到,获得积分10
21秒前
Fergusonxiong应助张伯猪采纳,获得10
21秒前
21秒前
Mayinhere发布了新的文献求助10
22秒前
23秒前
23秒前
英俊的铭应助qwer采纳,获得10
23秒前
ding应助Siii采纳,获得10
24秒前
slp发布了新的文献求助20
24秒前
24秒前
7777777发布了新的文献求助10
25秒前
柚子茶茶茶完成签到,获得积分10
26秒前
sunzhuxi发布了新的文献求助10
26秒前
27秒前
Dabiel1213完成签到,获得积分10
27秒前
28秒前
小云云发布了新的文献求助10
28秒前
29秒前
29秒前
Milton_z完成签到 ,获得积分10
30秒前
JamesPei应助安诺采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291984
求助须知:如何正确求助?哪些是违规求助? 2928448
关于积分的说明 8436905
捐赠科研通 2600395
什么是DOI,文献DOI怎么找? 1419045
科研通“疑难数据库(出版商)”最低求助积分说明 660216
邀请新用户注册赠送积分活动 642849