f-FNC: Privacy concerned efficient federated approach for fake news classification

计算机科学 分类器(UML) 建筑 联合学习 机器学习 GSM演进的增强数据速率 深度学习 人工智能 边缘设备 数据挖掘 情报检索 云计算 操作系统 艺术 视觉艺术
作者
Vikas Khullar,Harjit Singh
出处
期刊:Information Sciences [Elsevier]
卷期号:639: 119017-119017 被引量:5
标识
DOI:10.1016/j.ins.2023.119017
摘要

Fake news and manipulated information affect the social, economic and emotional growth of the world's population. For the identification of fake news, several classification systems are available, but no such system was found fast, secure and reliable as per the need of the hour. In this work, an efficient framework based on the federated architecture for the classification of fake news was proposed, while maintaining the data privacy constraints for sensitive text news datasets. The proposed federated-Fake New Classification (f-FNC) framework utilized the distributed client–server architecture with data privacy of all client or connected edge devices. For the testing and evaluation of the proposed f-FNC framework, the non-identical data was gathered from several online resources and was disseminated in a pre-processed format. To test the validity of federated deep learning models, the experiments were performed under various scenarios such as traditional learning, federated learning single client, and federated learning multi-clients. The performance of f-FNC framework was evaluated through various computational parameters such as accuracy and loss validation along with available resource parameters including CPU and RAM utilization. It was observed from the resultant outcome that the proposed f-FNC framework worked significantly well in both single-client and multi-client (N-clients) scenarios in comparison to traditional distributed deep learning based classifiers. The additional features of low cost and data-privacy of edge devices with limited resources made this proposed framework unique and the best alternative to existing fake news classifier tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的Z完成签到,获得积分10
1秒前
一苇以航完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
菠萝水手发布了新的文献求助10
2秒前
醇杰的明哲完成签到 ,获得积分10
2秒前
顺利的妖妖完成签到 ,获得积分10
2秒前
2秒前
ZZY完成签到,获得积分20
3秒前
思源应助和谐的寒安采纳,获得10
3秒前
3秒前
沙克几十块完成签到,获得积分0
3秒前
ZJYYDB完成签到,获得积分20
3秒前
丘比特应助青枫采纳,获得10
4秒前
4秒前
Ava应助Xuuu采纳,获得10
4秒前
ceeray23应助zsp采纳,获得10
5秒前
zzzz完成签到 ,获得积分10
6秒前
ZZY发布了新的文献求助10
6秒前
西大门官人完成签到,获得积分10
6秒前
踏实语海完成签到,获得积分10
6秒前
7秒前
7秒前
烟花应助小吕同学采纳,获得10
7秒前
7秒前
莴苣完成签到,获得积分10
8秒前
朕要去幼儿园深造啦完成签到,获得积分10
8秒前
浩然完成签到,获得积分10
8秒前
寒冷班发布了新的文献求助10
8秒前
酷波er应助JSzzZ采纳,获得10
9秒前
9秒前
彪壮的美女完成签到,获得积分10
9秒前
123完成签到,获得积分10
10秒前
科研通AI6应助橘涂初九采纳,获得10
10秒前
lei.qin完成签到 ,获得积分10
10秒前
11秒前
木冉完成签到 ,获得积分10
11秒前
务实大神完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392