NetGPT: Generative Pretrained Transformer for Network Traffic

计算机科学 交通生成模型 交通分类 网络流量模拟 页眉 网络流量控制 网络数据包 数据挖掘 人工智能 计算机网络
作者
Xuying Meng,Chungang Lin,Yequan Wang,Yujun Zhang
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2304.09513
摘要

All data on the Internet are transferred by network traffic, thus accurately modeling network traffic can help improve network services quality and protect data privacy. Pretrained models for network traffic can utilize large-scale raw data to learn the essential characteristics of network traffic, and generate distinguishable results for input traffic without considering specific downstream tasks. Effective pretrained models can significantly optimize the training efficiency and effectiveness of downstream tasks, such as application classification, attack detection and traffic generation. Despite the great success of pretraining in natural language processing, there is no work in the network field. Considering the diverse demands and characteristics of network traffic and network tasks, it is non-trivial to build a pretrained model for network traffic and we face various challenges, especially the heterogeneous headers and payloads in the multi-pattern network traffic and the different dependencies for contexts of diverse downstream network tasks. To tackle these challenges, in this paper, we make the first attempt to provide a generative pretrained model NetGPT for both traffic understanding and generation tasks. We propose the multi-pattern network traffic modeling to construct unified text inputs and support both traffic understanding and generation tasks. We further optimize the adaptation effect of the pretrained model to diversified tasks by shuffling header fields, segmenting packets in flows, and incorporating diverse task labels with prompts. With diverse traffic datasets from encrypted software, DNS, private industrial protocols and cryptocurrency mining, expensive experiments demonstrate the effectiveness of our NetGPT in a range of traffic understanding and generation tasks on traffic datasets, and outperform state-of-the-art baselines by a wide margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助zzzggc采纳,获得50
刚刚
乐乐应助你是千堆雪采纳,获得10
1秒前
李明发布了新的文献求助10
3秒前
科研通AI2S应助FloppyWow采纳,获得10
3秒前
pluto应助豆芽菜菜籽采纳,获得10
4秒前
4秒前
5秒前
hahaha123完成签到 ,获得积分10
5秒前
科研通AI2S应助汪惜寒采纳,获得10
7秒前
科研通AI2S应助晨宸采纳,获得10
8秒前
动听的刚完成签到,获得积分20
8秒前
9秒前
9秒前
556发布了新的文献求助10
9秒前
9秒前
香芋应助Fiona03采纳,获得20
10秒前
10秒前
清脆大树发布了新的文献求助10
11秒前
zz完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
雨双完成签到,获得积分10
14秒前
14秒前
小元发布了新的文献求助10
14秒前
生动惜灵应助李明采纳,获得10
15秒前
小蘑菇应助李明采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
小二郎应助hooka采纳,获得10
17秒前
17秒前
深情安青应助yyyyou采纳,获得10
17秒前
多多发布了新的文献求助10
18秒前
小蘑菇发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434062
求助须知:如何正确求助?哪些是违规求助? 3031257
关于积分的说明 8941535
捐赠科研通 2719231
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689418
邀请新用户注册赠送积分活动 685548