NetGPT: Generative Pretrained Transformer for Network Traffic

计算机科学 交通生成模型 交通分类 网络流量模拟 页眉 网络流量控制 网络数据包 数据挖掘 人工智能 计算机网络
作者
Xuying Meng,Chungang Lin,Yequan Wang,Yujun Zhang
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2304.09513
摘要

All data on the Internet are transferred by network traffic, thus accurately modeling network traffic can help improve network services quality and protect data privacy. Pretrained models for network traffic can utilize large-scale raw data to learn the essential characteristics of network traffic, and generate distinguishable results for input traffic without considering specific downstream tasks. Effective pretrained models can significantly optimize the training efficiency and effectiveness of downstream tasks, such as application classification, attack detection and traffic generation. Despite the great success of pretraining in natural language processing, there is no work in the network field. Considering the diverse demands and characteristics of network traffic and network tasks, it is non-trivial to build a pretrained model for network traffic and we face various challenges, especially the heterogeneous headers and payloads in the multi-pattern network traffic and the different dependencies for contexts of diverse downstream network tasks. To tackle these challenges, in this paper, we make the first attempt to provide a generative pretrained model NetGPT for both traffic understanding and generation tasks. We propose the multi-pattern network traffic modeling to construct unified text inputs and support both traffic understanding and generation tasks. We further optimize the adaptation effect of the pretrained model to diversified tasks by shuffling header fields, segmenting packets in flows, and incorporating diverse task labels with prompts. With diverse traffic datasets from encrypted software, DNS, private industrial protocols and cryptocurrency mining, expensive experiments demonstrate the effectiveness of our NetGPT in a range of traffic understanding and generation tasks on traffic datasets, and outperform state-of-the-art baselines by a wide margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽的楼房完成签到 ,获得积分10
1秒前
1秒前
大观天下完成签到,获得积分10
2秒前
端庄的冬天完成签到,获得积分10
2秒前
所所应助yizhe采纳,获得10
2秒前
高大的静曼完成签到,获得积分10
3秒前
JK完成签到,获得积分10
4秒前
景行行止完成签到,获得积分10
4秒前
草原狼完成签到,获得积分10
4秒前
4秒前
gexiaoyang完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
小二郎应助自信的孱采纳,获得10
6秒前
小马甲应助小王采纳,获得10
7秒前
伶俐的秋白完成签到,获得积分10
7秒前
7秒前
思源应助维生素采纳,获得10
8秒前
8秒前
完美梨愁发布了新的文献求助10
11秒前
11秒前
12秒前
英俊的铭应助白兰鸽采纳,获得10
14秒前
布洛小芬完成签到 ,获得积分20
15秒前
whatever应助shark采纳,获得20
15秒前
默默雪旋完成签到 ,获得积分10
15秒前
牧紫菱完成签到,获得积分10
16秒前
17秒前
18秒前
小王发布了新的文献求助10
18秒前
18秒前
Eric完成签到,获得积分10
19秒前
开朗的山彤完成签到,获得积分10
19秒前
维生素完成签到,获得积分10
19秒前
时林完成签到,获得积分10
19秒前
傻瓜完成签到 ,获得积分10
20秒前
21秒前
大观天下发布了新的文献求助10
23秒前
忽远忽近的她完成签到 ,获得积分10
23秒前
维生素发布了新的文献求助10
24秒前
butterfly发布了新的文献求助10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029