NetGPT: Generative Pretrained Transformer for Network Traffic

计算机科学 交通生成模型 交通分类 网络流量模拟 页眉 网络流量控制 网络数据包 数据挖掘 人工智能 计算机网络
作者
Xuying Meng,Chungang Lin,Yequan Wang,Yujun Zhang
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2304.09513
摘要

All data on the Internet are transferred by network traffic, thus accurately modeling network traffic can help improve network services quality and protect data privacy. Pretrained models for network traffic can utilize large-scale raw data to learn the essential characteristics of network traffic, and generate distinguishable results for input traffic without considering specific downstream tasks. Effective pretrained models can significantly optimize the training efficiency and effectiveness of downstream tasks, such as application classification, attack detection and traffic generation. Despite the great success of pretraining in natural language processing, there is no work in the network field. Considering the diverse demands and characteristics of network traffic and network tasks, it is non-trivial to build a pretrained model for network traffic and we face various challenges, especially the heterogeneous headers and payloads in the multi-pattern network traffic and the different dependencies for contexts of diverse downstream network tasks. To tackle these challenges, in this paper, we make the first attempt to provide a generative pretrained model NetGPT for both traffic understanding and generation tasks. We propose the multi-pattern network traffic modeling to construct unified text inputs and support both traffic understanding and generation tasks. We further optimize the adaptation effect of the pretrained model to diversified tasks by shuffling header fields, segmenting packets in flows, and incorporating diverse task labels with prompts. With diverse traffic datasets from encrypted software, DNS, private industrial protocols and cryptocurrency mining, expensive experiments demonstrate the effectiveness of our NetGPT in a range of traffic understanding and generation tasks on traffic datasets, and outperform state-of-the-art baselines by a wide margin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小包子完成签到,获得积分10
刚刚
五本笔记完成签到 ,获得积分10
刚刚
难过的溪流完成签到 ,获得积分10
1秒前
fawr完成签到 ,获得积分10
1秒前
哎呀完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
涂山白切鸡完成签到,获得积分10
2秒前
ju00发布了新的文献求助10
2秒前
abtitw完成签到,获得积分10
2秒前
zxx发布了新的文献求助10
4秒前
Freddy完成签到 ,获得积分10
4秒前
tulips完成签到 ,获得积分10
4秒前
洁净的天德完成签到,获得积分10
5秒前
Sunsets完成签到 ,获得积分10
5秒前
隔水一路秋完成签到,获得积分10
6秒前
amanda完成签到,获得积分10
7秒前
Cc完成签到 ,获得积分10
7秒前
飞云发布了新的文献求助30
8秒前
刘传宏完成签到,获得积分10
8秒前
dujinjun完成签到,获得积分10
9秒前
zuoyou完成签到,获得积分10
9秒前
9秒前
ww完成签到,获得积分10
9秒前
tomorrow完成签到,获得积分10
10秒前
慕青应助ju00采纳,获得10
10秒前
12秒前
柒tt完成签到,获得积分10
12秒前
haozi完成签到,获得积分10
14秒前
开心的眼睛完成签到,获得积分10
15秒前
甜美的芷完成签到,获得积分20
15秒前
ding应助爱看文献的小朱采纳,获得10
16秒前
yaowenjun完成签到,获得积分10
17秒前
玉米侠完成签到 ,获得积分10
18秒前
DreamRunner0410完成签到,获得积分10
19秒前
Orange应助甜美的芷采纳,获得10
20秒前
龙抬头完成签到,获得积分10
20秒前
亮亮完成签到,获得积分10
20秒前
托托完成签到,获得积分10
21秒前
qpzn完成签到,获得积分10
21秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584888
求助须知:如何正确求助?哪些是违规求助? 4668769
关于积分的说明 14771947
捐赠科研通 4616207
什么是DOI,文献DOI怎么找? 2530267
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590