NetGPT: Generative Pretrained Transformer for Network Traffic

计算机科学 交通生成模型 交通分类 网络流量模拟 页眉 网络流量控制 网络数据包 数据挖掘 人工智能 计算机网络
作者
Xuying Meng,Chungang Lin,Yequan Wang,Yujun Zhang
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2304.09513
摘要

All data on the Internet are transferred by network traffic, thus accurately modeling network traffic can help improve network services quality and protect data privacy. Pretrained models for network traffic can utilize large-scale raw data to learn the essential characteristics of network traffic, and generate distinguishable results for input traffic without considering specific downstream tasks. Effective pretrained models can significantly optimize the training efficiency and effectiveness of downstream tasks, such as application classification, attack detection and traffic generation. Despite the great success of pretraining in natural language processing, there is no work in the network field. Considering the diverse demands and characteristics of network traffic and network tasks, it is non-trivial to build a pretrained model for network traffic and we face various challenges, especially the heterogeneous headers and payloads in the multi-pattern network traffic and the different dependencies for contexts of diverse downstream network tasks. To tackle these challenges, in this paper, we make the first attempt to provide a generative pretrained model NetGPT for both traffic understanding and generation tasks. We propose the multi-pattern network traffic modeling to construct unified text inputs and support both traffic understanding and generation tasks. We further optimize the adaptation effect of the pretrained model to diversified tasks by shuffling header fields, segmenting packets in flows, and incorporating diverse task labels with prompts. With diverse traffic datasets from encrypted software, DNS, private industrial protocols and cryptocurrency mining, expensive experiments demonstrate the effectiveness of our NetGPT in a range of traffic understanding and generation tasks on traffic datasets, and outperform state-of-the-art baselines by a wide margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特翎完成签到,获得积分10
刚刚
烟花应助小强采纳,获得10
1秒前
wangtiantian发布了新的文献求助30
1秒前
1秒前
(●'◡'●)完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
Rain发布了新的文献求助10
2秒前
ywzwszl完成签到,获得积分10
2秒前
yhw发布了新的文献求助10
4秒前
万能图书馆应助dild采纳,获得10
4秒前
dcx发布了新的文献求助10
4秒前
4秒前
贝壳完成签到,获得积分10
4秒前
5秒前
6秒前
菜菜果冻发布了新的文献求助20
7秒前
8秒前
ll关闭了ll文献求助
10秒前
Zzzzzzz完成签到,获得积分10
10秒前
李健应助怕黑的银耳汤采纳,获得30
10秒前
10秒前
11秒前
bai发布了新的文献求助10
11秒前
天才完成签到,获得积分10
12秒前
多喝热水完成签到,获得积分10
12秒前
研友_xnEOX8发布了新的文献求助50
12秒前
12秒前
没有感情的PCR仪完成签到,获得积分10
13秒前
13秒前
星禾吾发布了新的文献求助10
14秒前
SYLH应助外向的蜡烛采纳,获得10
14秒前
lyyyy发布了新的文献求助10
14秒前
抒文完成签到,获得积分20
15秒前
可爱的函函应助改改采纳,获得10
16秒前
16秒前
djiwisksk66应助豆子采纳,获得10
17秒前
17秒前
Zesong发布了新的文献求助10
17秒前
抒文发布了新的文献求助10
19秒前
dild发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3516009
关于积分的说明 11180382
捐赠科研通 3251075
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875988
科研通“疑难数据库(出版商)”最低求助积分说明 805209