A Rapid Derivatization for Quantitation of Perfluorinated Carboxylic Acids from Aqueous Matrices by Gas Chromatography–Mass Spectrometry

化学 衍生化 超纯水 色谱法 检出限 分析物 水溶液 质谱法 萃取(化学) 气相色谱-质谱法 气相色谱法 重氮甲烷 样品制备 自来水 有机化学 材料科学 环境工程 工程类 纳米技术
作者
RenXi Ye,Robert A. Di Lorenzo,Jessica T. Clouthier,Cora J. Young,Trevor C. VandenBoer
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (19): 7648-7655 被引量:8
标识
DOI:10.1021/acs.analchem.3c00593
摘要

Ultrashort-chain perfluorinated carboxylic acids (PFCAs) are receiving more attention due to their ever-increasing presence in the environment. Methods have been established for the analysis of short- and long-chain PFCAs, while robust quantitation of ultrashort-chain species is scarce. Here, we develop a novel derivatization method using diphenyl diazomethane for quantitation of C2-C14 PFCAs in aqueous matrices. The method is highlighted by rapid completion of derivatization (<1 min) and retention and separation of ultrashort-chain (C2/C3) PFCA derivatives using H2 carrier gas (R > 1.5). A weak anion exchange solid-phase extraction procedure for analyte recovery from representative aqueous samples was developed and validated by spike and recovery from ultrapure water, synthetic ocean water, and simulated denuder extracts used for collecting gaseous PFCAs. Recoveries for PFCAs ranged from 83 to 130% for the majority of analytes and matrices. The instrument detection limits (IDLs) range from 8 to 220 fg per injection, and method detection limits (MDLs) range from 0.06 to 14.6 pg/mL for 500 mL aqueous samples, which are within an order of magnitude to conventional LC-MS/MS methods. The method was applied to the analysis of real samples of tap water, rainwater, ocean water, and annular denuder extracts. The overall method provides a cost-effective alternative to conventional LC-MS/MS methods, overcoming the typical GC-MS drawbacks of high detection limits and long sample preparation times while being able to simultaneously analyze the complete spectrum of environmentally relevant PFCAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dpp完成签到,获得积分20
刚刚
cat发布了新的文献求助10
刚刚
姚运龙完成签到,获得积分10
刚刚
Jasper应助lost采纳,获得10
刚刚
1秒前
zhaowenxian发布了新的文献求助10
1秒前
1秒前
YULIA完成签到,获得积分10
2秒前
2秒前
yz完成签到,获得积分10
2秒前
美女完成签到,获得积分10
2秒前
2秒前
Moihan完成签到,获得积分10
2秒前
音乐完成签到,获得积分10
2秒前
3秒前
忧郁绿兰完成签到,获得积分10
3秒前
huangyi发布了新的文献求助10
4秒前
4秒前
邓佳鑫Alan应助uniphoton采纳,获得10
4秒前
打打应助哭泣的金鱼采纳,获得10
4秒前
起风了发布了新的文献求助10
5秒前
灬乔完成签到 ,获得积分10
5秒前
yxy发布了新的文献求助10
5秒前
与光同晨发布了新的文献求助10
5秒前
6秒前
陶醉薯片完成签到,获得积分20
6秒前
smartbot完成签到,获得积分10
7秒前
请叫我风吹麦浪应助mi采纳,获得10
7秒前
7秒前
YHL发布了新的文献求助10
7秒前
su完成签到,获得积分10
7秒前
7秒前
自信富完成签到,获得积分10
8秒前
乖乖完成签到 ,获得积分10
8秒前
8秒前
liudiqiu应助Ll采纳,获得10
8秒前
灬乔关注了科研通微信公众号
9秒前
张菁完成签到,获得积分10
9秒前
菠萝吹雪应助xiachengcs采纳,获得30
10秒前
洋洋发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762