A subregion-based prediction model for local–regional recurrence risk in head and neck squamous cell carcinoma

头颈部鳞状细胞癌 头颈部 基底细胞 头颈部癌 医学 放射科 肿瘤科 内科学 癌症 外科
作者
Ziqi Pan,Kuo Men,Bin Liang,Zhiyue Song,Runye Wu,Jianrong Dai
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:184: 109684-109684 被引量:17
标识
DOI:10.1016/j.radonc.2023.109684
摘要

Given that the intratumoral heterogeneity of head and neck squamous cell carcinoma may be related to the local control rate of radiotherapy, the aim of this study was to construct a subregion-based model that can predict the risk of local-regional recurrence, and to quantitatively assess the relative contribution of subregions.The CT images, PET images, dose images and GTVs of 228 patients with head and neck squamous cell carcinoma from four different institutions of the The Cancer Imaging Archive(TCIA) were included in the study. Using a supervoxel segmentation algorithm called maskSLIC to generate individual-level subregions. After extracting 1781 radiomics and 1767 dosiomics features from subregions, an attention-based multiple instance risk prediction model (MIR) was established. The GTV model was developed based on the whole tumour area and was used to compare the prediction performance with the MIR model. Furthermore, the MIR-Clinical model was constructed by integrating the MIR model with clinical factors. Subregional analysis was carried out through the Wilcoxon test to find the differential radiomic features between the highest and lowest weighted subregions.Compared with the GTV model, the C-index of MIR model was significantly increased from 0.624 to 0.721(Wilcoxon test, p value < 0.0001). When MIR model was combined with clinical factors, the C-index was further increased to 0.766. Subregional analysis showed that for LR patients, the top three differential radiomic features between the highest and lowest weighted subregions were GLRLM_ShortRunHighGrayLevelEmphasis, GRLM_HghGrayLevelRunEmphasis and GLRLM_LongRunHighGrayLevelEmphasis.This study developed a subregion-based model that can predict the risk of local-regional recurrence and quantitatively assess relevant subregions, which may provide technical support for the precision radiotherapy in head and neck squamous cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhanglinfeng发布了新的文献求助10
3秒前
3秒前
领导范儿应助灵珠学医采纳,获得10
3秒前
大胆帮帮主完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
Akim应助棉花糖采纳,获得10
6秒前
newplayer完成签到,获得积分10
6秒前
背后的海之完成签到,获得积分10
6秒前
6秒前
6秒前
dkx发布了新的文献求助10
8秒前
CipherSage应助淡淡从安采纳,获得10
8秒前
11完成签到,获得积分10
8秒前
小赐发布了新的文献求助10
8秒前
8秒前
8秒前
小蘑菇应助河豚的猪采纳,获得10
9秒前
Dong发布了新的文献求助10
9秒前
完美世界应助畅快的荣轩采纳,获得10
10秒前
10秒前
CHEN完成签到,获得积分10
12秒前
twr发布了新的文献求助10
12秒前
12秒前
传奇3应助wangsiheng采纳,获得10
14秒前
考博圣体发布了新的文献求助10
14秒前
完美世界应助ljh采纳,获得30
16秒前
华仔应助ljh采纳,获得100
16秒前
思源应助ljh采纳,获得10
16秒前
NexusExplorer应助ljh采纳,获得10
16秒前
科研通AI2S应助ljh采纳,获得30
16秒前
16秒前
阿泽完成签到,获得积分10
17秒前
KK完成签到 ,获得积分10
17秒前
李健的粉丝团团长应助twr采纳,获得10
17秒前
18秒前
欧阳发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605746
求助须知:如何正确求助?哪些是违规求助? 4690350
关于积分的说明 14863110
捐赠科研通 4702499
什么是DOI,文献DOI怎么找? 2542243
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142