A subregion-based prediction model for local–regional recurrence risk in head and neck squamous cell carcinoma

头颈部鳞状细胞癌 头颈部 基底细胞 头颈部癌 医学 放射科 肿瘤科 内科学 癌症 外科
作者
Ziqi Pan,Kuo Men,Bin Liang,Zhiyue Song,Runye Wu,Jianrong Dai
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:184: 109684-109684 被引量:16
标识
DOI:10.1016/j.radonc.2023.109684
摘要

Given that the intratumoral heterogeneity of head and neck squamous cell carcinoma may be related to the local control rate of radiotherapy, the aim of this study was to construct a subregion-based model that can predict the risk of local-regional recurrence, and to quantitatively assess the relative contribution of subregions.The CT images, PET images, dose images and GTVs of 228 patients with head and neck squamous cell carcinoma from four different institutions of the The Cancer Imaging Archive(TCIA) were included in the study. Using a supervoxel segmentation algorithm called maskSLIC to generate individual-level subregions. After extracting 1781 radiomics and 1767 dosiomics features from subregions, an attention-based multiple instance risk prediction model (MIR) was established. The GTV model was developed based on the whole tumour area and was used to compare the prediction performance with the MIR model. Furthermore, the MIR-Clinical model was constructed by integrating the MIR model with clinical factors. Subregional analysis was carried out through the Wilcoxon test to find the differential radiomic features between the highest and lowest weighted subregions.Compared with the GTV model, the C-index of MIR model was significantly increased from 0.624 to 0.721(Wilcoxon test, p value < 0.0001). When MIR model was combined with clinical factors, the C-index was further increased to 0.766. Subregional analysis showed that for LR patients, the top three differential radiomic features between the highest and lowest weighted subregions were GLRLM_ShortRunHighGrayLevelEmphasis, GRLM_HghGrayLevelRunEmphasis and GLRLM_LongRunHighGrayLevelEmphasis.This study developed a subregion-based model that can predict the risk of local-regional recurrence and quantitatively assess relevant subregions, which may provide technical support for the precision radiotherapy in head and neck squamous cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚世娇完成签到 ,获得积分10
刚刚
FashionBoy应助高手采纳,获得10
1秒前
meng完成签到,获得积分10
2秒前
chennn完成签到,获得积分10
2秒前
4秒前
5秒前
晗月完成签到,获得积分10
5秒前
情怀应助如意枫叶采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
Akim应助SS采纳,获得10
9秒前
张雷应助清新的夜蕾采纳,获得20
9秒前
chennn发布了新的文献求助10
9秒前
罗一完成签到,获得积分10
11秒前
13秒前
丘比特应助wu采纳,获得10
16秒前
俏皮芷蕊发布了新的文献求助30
16秒前
称心的菲鹰完成签到,获得积分10
17秒前
碧蓝问安发布了新的文献求助10
18秒前
18秒前
打打应助ZZZ采纳,获得10
20秒前
24秒前
呆萌板凳发布了新的文献求助10
24秒前
hp关闭了hp文献求助
25秒前
26秒前
都选C完成签到,获得积分10
27秒前
壮观以松完成签到,获得积分10
27秒前
Liufgui应助郭小宝采纳,获得20
27秒前
heli完成签到,获得积分10
29秒前
如意枫叶发布了新的文献求助10
30秒前
都选C发布了新的文献求助10
31秒前
英俊的铭应助淡烟流水采纳,获得10
32秒前
32秒前
Miracle完成签到,获得积分10
34秒前
38秒前
wu发布了新的文献求助10
38秒前
忧心的听双完成签到,获得积分10
38秒前
Timon完成签到,获得积分10
39秒前
深情安青应助Miracle采纳,获得10
40秒前
李健应助猪猪hero采纳,获得10
40秒前
kingwill应助Harlotte采纳,获得60
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136