清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A subregion-based prediction model for local–regional recurrence risk in head and neck squamous cell carcinoma

头颈部鳞状细胞癌 头颈部 基底细胞 头颈部癌 医学 放射科 肿瘤科 内科学 癌症 外科
作者
Ziqi Pan,Kuo Men,Bin Liang,Zhiyue Song,Runye Wu,Jianrong Dai
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:184: 109684-109684 被引量:16
标识
DOI:10.1016/j.radonc.2023.109684
摘要

Given that the intratumoral heterogeneity of head and neck squamous cell carcinoma may be related to the local control rate of radiotherapy, the aim of this study was to construct a subregion-based model that can predict the risk of local-regional recurrence, and to quantitatively assess the relative contribution of subregions.The CT images, PET images, dose images and GTVs of 228 patients with head and neck squamous cell carcinoma from four different institutions of the The Cancer Imaging Archive(TCIA) were included in the study. Using a supervoxel segmentation algorithm called maskSLIC to generate individual-level subregions. After extracting 1781 radiomics and 1767 dosiomics features from subregions, an attention-based multiple instance risk prediction model (MIR) was established. The GTV model was developed based on the whole tumour area and was used to compare the prediction performance with the MIR model. Furthermore, the MIR-Clinical model was constructed by integrating the MIR model with clinical factors. Subregional analysis was carried out through the Wilcoxon test to find the differential radiomic features between the highest and lowest weighted subregions.Compared with the GTV model, the C-index of MIR model was significantly increased from 0.624 to 0.721(Wilcoxon test, p value < 0.0001). When MIR model was combined with clinical factors, the C-index was further increased to 0.766. Subregional analysis showed that for LR patients, the top three differential radiomic features between the highest and lowest weighted subregions were GLRLM_ShortRunHighGrayLevelEmphasis, GRLM_HghGrayLevelRunEmphasis and GLRLM_LongRunHighGrayLevelEmphasis.This study developed a subregion-based model that can predict the risk of local-regional recurrence and quantitatively assess relevant subregions, which may provide technical support for the precision radiotherapy in head and neck squamous cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjq完成签到 ,获得积分10
3秒前
3秒前
HUFREE完成签到,获得积分20
6秒前
HUFREE发布了新的文献求助10
8秒前
酷酷小子完成签到 ,获得积分10
9秒前
ceploup完成签到,获得积分10
9秒前
风-FBDD完成签到,获得积分10
21秒前
26秒前
一株多肉完成签到 ,获得积分10
27秒前
猪仔5号完成签到 ,获得积分10
28秒前
ROMANTIC完成签到 ,获得积分10
28秒前
如意枫叶发布了新的文献求助10
32秒前
星辰大海应助远山淡影_cy采纳,获得10
39秒前
纯真的梦竹完成签到,获得积分10
43秒前
小田完成签到 ,获得积分10
43秒前
zhuosht完成签到 ,获得积分10
44秒前
周运来完成签到,获得积分10
46秒前
飞飞完成签到,获得积分10
59秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ntrip完成签到,获得积分10
1分钟前
沉默梦柏完成签到,获得积分20
1分钟前
小潘完成签到 ,获得积分10
1分钟前
克姑美完成签到 ,获得积分10
1分钟前
zgx完成签到 ,获得积分10
1分钟前
车剑锋完成签到,获得积分10
1分钟前
顺心的惜蕊完成签到 ,获得积分10
1分钟前
jibenkun完成签到,获得积分10
2分钟前
小新完成签到 ,获得积分10
2分钟前
mark33442完成签到,获得积分10
2分钟前
济民财完成签到,获得积分10
2分钟前
长生完成签到 ,获得积分10
2分钟前
licui完成签到,获得积分10
2分钟前
简单发布了新的文献求助10
2分钟前
一苇以航完成签到 ,获得积分10
2分钟前
睡到自然醒完成签到 ,获得积分10
2分钟前
秋秋完成签到 ,获得积分10
2分钟前
YAN完成签到 ,获得积分10
2分钟前
2分钟前
多亿点完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990835
求助须知:如何正确求助?哪些是违规求助? 3532241
关于积分的说明 11256614
捐赠科研通 3271100
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809236