A subregion-based prediction model for local–regional recurrence risk in head and neck squamous cell carcinoma

头颈部鳞状细胞癌 头颈部 基底细胞 头颈部癌 医学 放射科 肿瘤科 内科学 癌症 外科
作者
Ziqi Pan,Kuo Men,Bin Liang,Zhiyue Song,Runye Wu,Jianrong Dai
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:184: 109684-109684 被引量:16
标识
DOI:10.1016/j.radonc.2023.109684
摘要

Given that the intratumoral heterogeneity of head and neck squamous cell carcinoma may be related to the local control rate of radiotherapy, the aim of this study was to construct a subregion-based model that can predict the risk of local-regional recurrence, and to quantitatively assess the relative contribution of subregions.The CT images, PET images, dose images and GTVs of 228 patients with head and neck squamous cell carcinoma from four different institutions of the The Cancer Imaging Archive(TCIA) were included in the study. Using a supervoxel segmentation algorithm called maskSLIC to generate individual-level subregions. After extracting 1781 radiomics and 1767 dosiomics features from subregions, an attention-based multiple instance risk prediction model (MIR) was established. The GTV model was developed based on the whole tumour area and was used to compare the prediction performance with the MIR model. Furthermore, the MIR-Clinical model was constructed by integrating the MIR model with clinical factors. Subregional analysis was carried out through the Wilcoxon test to find the differential radiomic features between the highest and lowest weighted subregions.Compared with the GTV model, the C-index of MIR model was significantly increased from 0.624 to 0.721(Wilcoxon test, p value < 0.0001). When MIR model was combined with clinical factors, the C-index was further increased to 0.766. Subregional analysis showed that for LR patients, the top three differential radiomic features between the highest and lowest weighted subregions were GLRLM_ShortRunHighGrayLevelEmphasis, GRLM_HghGrayLevelRunEmphasis and GLRLM_LongRunHighGrayLevelEmphasis.This study developed a subregion-based model that can predict the risk of local-regional recurrence and quantitatively assess relevant subregions, which may provide technical support for the precision radiotherapy in head and neck squamous cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏一曲完成签到 ,获得积分10
1秒前
荒野风发布了新的文献求助10
1秒前
轻松的鸿煊完成签到 ,获得积分10
2秒前
NCU-Xzzzz发布了新的文献求助10
2秒前
4秒前
JJG完成签到,获得积分20
5秒前
Hello应助Tiam采纳,获得10
6秒前
6秒前
ty完成签到,获得积分10
8秒前
zehua309完成签到,获得积分10
9秒前
火星上含芙完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
掌门发布了新的文献求助10
12秒前
愉快的花卷完成签到,获得积分10
12秒前
少言完成签到,获得积分10
14秒前
kiko完成签到,获得积分10
15秒前
隐形惜筠完成签到 ,获得积分10
17秒前
黑眼圈完成签到,获得积分10
21秒前
123发布了新的文献求助10
23秒前
24秒前
25秒前
又又妈妈完成签到,获得积分10
25秒前
欢呼的丁真完成签到,获得积分10
26秒前
ty发布了新的文献求助10
26秒前
Faded完成签到 ,获得积分10
27秒前
ding应助Amorfati采纳,获得10
27秒前
好好学习天天向上完成签到,获得积分10
28秒前
所所应助lh采纳,获得10
29秒前
李爱国应助深情丸子采纳,获得10
29秒前
烟花应助阿湫采纳,获得10
29秒前
29秒前
乌梅不乌发布了新的文献求助10
30秒前
30秒前
YY完成签到,获得积分10
31秒前
32秒前
32秒前
Tiam发布了新的文献求助10
32秒前
种花家的狗狗完成签到,获得积分10
32秒前
wisdom完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048