An artificial intelligence model for instance segmentation and tooth numbering on orthopantomograms.

编号 人工智能 计算机科学 分割 卷积神经网络 基本事实 分类器(UML) 模式识别(心理学) 算法
作者
Niha Adnan,Waleed Bin Khalid,Fahad Umer
出处
期刊:PubMed 卷期号:26 (4): 301-309 被引量:1
标识
DOI:10.3290/j.ijcd.b3840535
摘要

To develop a deep learning (DL) artificial intelligence (AI) model for instance segmentation and tooth numbering on orthopantomograms (OPGs).Forty OPGs were manually annotated to lay down the ground truth for training two convolutional neural networks (CNNs): U-net and Faster RCNN. These algorithms were concurrently trained and validated on a dataset of 1280 teeth (40 OPGs) each. The U-net algorithm was trained on OPGs specifically annotated with polygons to label all 32 teeth via instance segmentation, allowing each tooth to be denoted as a separate entity from the surrounding structures. Simultaneously, teeth were also numbered according to the Fédération Dentaire Internationale (FDI) numbering system, using bounding boxes to train Faster RCNN. Consequently, both trained CNNs were combined to develop an AI model capable of segmenting and numbering all teeth on an OPG.The performance of the U-net algorithm was determined using various performance metrics including precision = 88.8%, accuracy = 88.2%, recall = 87.3%, F-1 score = 88%, dice index = 92.3%, and Intersection over Union (IoU) = 86.3%. The performance metrics of the Faster RCNN algorithm were determined using overlap accuracy = 30.2 bounding boxes (out of a possible of 32 boxes) and classifier accuracy of labels = 93.8%.The instance segmentation and tooth numbering results of our trained AI model were close to the ground truth, indicating a promising future for their incorporation into clinical dental practice. The ability of an AI model to automatically identify teeth on OPGs will aid dentists with diagnosis and treatment planning, thus increasing efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助XUXU采纳,获得10
刚刚
everyone_woo发布了新的文献求助10
刚刚
yznfly应助冷酷仙境的羊男采纳,获得30
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
饮一杯为谁丶完成签到,获得积分10
1秒前
Alex应助科研通管家采纳,获得10
1秒前
Alex应助科研通管家采纳,获得20
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
laryc完成签到,获得积分10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得50
2秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
考拉完成签到 ,获得积分10
2秒前
Alex应助科研通管家采纳,获得20
2秒前
阿尔图完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
ddd应助科研通管家采纳,获得100
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
3秒前
he完成签到 ,获得积分10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
Jasper应助虚幻小丸子采纳,获得10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
zxy应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
欣慰小丸子应助lhh采纳,获得10
4秒前
HCl完成签到,获得积分10
4秒前
开水发布了新的文献求助30
4秒前
灿烂千阳完成签到,获得积分10
5秒前
有你就足够完成签到,获得积分10
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128