Controlling Sequential Hybrid Evolutionary Algorithm by Q-Learning [Research Frontier] [Research Frontier]

CMA-ES公司 计算机科学 进化算法 算法 差异进化 进化计算 人工智能 协方差矩阵 采样(信号处理) 机器学习 进化策略 滤波器(信号处理) 计算机视觉
作者
Haotian Zhang,Jianyong Sun,Thomas Bäck,Qingfu Zhang,Zongben Xu
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:18 (1): 84-103 被引量:9
标识
DOI:10.1109/mci.2022.3222057
摘要

Many state-of-the-art evolutionary algorithms (EAs) can be categorized as sequential hybrid EAs, in which various EAs are sequentially executed. The timing to switch from one EA to another is critical to the performance of the hybrid EA because the switching time determines the allocation of computational resources and thereby it helps balance exploration and exploitation. In this article, a framework for adaptive parameter control for hybrid EAs is proposed, in which the switching time is controlled by a learned agent rather than a manually designed scheme. First the framework is applied to an adaptive differential evolution algorithm, LSHADE, to control when to use the scheme to reduce the population. Then the framework is applied to the algorithm that won the CEC 2018 competition, i.e., the hybrid sampling evolution strategy (HSES), to control when to switch from the univariate sampling phase to the Covariance Matrix Adaptation Evolution Strategy phase. The agents for parameter control in LSHADE and HSES are trained by using Q-learning and deep Q-learning to obtain the learned algorithms Q-LSHADE and DQ-HSES. The results of experiments on the CEC 2014 and 2018 test suites show that the learned algorithms significantly outperform their counterparts and some state-of-the-art EAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuhan完成签到,获得积分20
刚刚
刚刚
Radisson完成签到,获得积分10
刚刚
刚刚
橡皮鱼完成签到,获得积分10
刚刚
无情麦片完成签到 ,获得积分10
刚刚
HonS完成签到,获得积分10
1秒前
嘉嘉发布了新的文献求助10
2秒前
传统的青完成签到,获得积分10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
pp完成签到,获得积分10
2秒前
浪子应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
要努力鸭发布了新的文献求助10
2秒前
所所应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浪子应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
有魅力的超短裙完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
尹辉发布了新的文献求助10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
yyyyy完成签到,获得积分10
4秒前
4秒前
huangjs完成签到,获得积分10
4秒前
5秒前
乐乐应助小乔采纳,获得30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645662
求助须知:如何正确求助?哪些是违规求助? 4769440
关于积分的说明 15031321
捐赠科研通 4804378
什么是DOI,文献DOI怎么找? 2568968
邀请新用户注册赠送积分活动 1526089
关于科研通互助平台的介绍 1485700