Controlling Sequential Hybrid Evolutionary Algorithm by Q-Learning [Research Frontier] [Research Frontier]

CMA-ES公司 计算机科学 进化算法 算法 差异进化 进化计算 人工智能 协方差矩阵 采样(信号处理) 机器学习 进化策略 滤波器(信号处理) 计算机视觉
作者
Haotian Zhang,Jianyong Sun,Thomas Bäck,Qingfu Zhang,Zongben Xu
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:18 (1): 84-103 被引量:9
标识
DOI:10.1109/mci.2022.3222057
摘要

Many state-of-the-art evolutionary algorithms (EAs) can be categorized as sequential hybrid EAs, in which various EAs are sequentially executed. The timing to switch from one EA to another is critical to the performance of the hybrid EA because the switching time determines the allocation of computational resources and thereby it helps balance exploration and exploitation. In this article, a framework for adaptive parameter control for hybrid EAs is proposed, in which the switching time is controlled by a learned agent rather than a manually designed scheme. First the framework is applied to an adaptive differential evolution algorithm, LSHADE, to control when to use the scheme to reduce the population. Then the framework is applied to the algorithm that won the CEC 2018 competition, i.e., the hybrid sampling evolution strategy (HSES), to control when to switch from the univariate sampling phase to the Covariance Matrix Adaptation Evolution Strategy phase. The agents for parameter control in LSHADE and HSES are trained by using Q-learning and deep Q-learning to obtain the learned algorithms Q-LSHADE and DQ-HSES. The results of experiments on the CEC 2014 and 2018 test suites show that the learned algorithms significantly outperform their counterparts and some state-of-the-art EAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱达不溜完成签到,获得积分20
刚刚
无花果应助gzj采纳,获得10
1秒前
Owen应助哈哈哈采纳,获得10
1秒前
1秒前
pw关闭了pw文献求助
1秒前
3秒前
xinxin完成签到,获得积分10
3秒前
4秒前
codedlock完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
王某发布了新的文献求助10
6秒前
Orange应助华丽的落寞采纳,获得10
6秒前
dasdsa完成签到,获得积分10
6秒前
7秒前
xuejunshuai发布了新的文献求助10
8秒前
缥缈的万声完成签到,获得积分10
8秒前
张爱学发布了新的文献求助10
9秒前
9秒前
乐乐应助leo227采纳,获得10
10秒前
英俊的铭应助非鱼鱼子采纳,获得10
10秒前
缓慢荔枝发布了新的文献求助10
11秒前
王九八发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
香云发布了新的文献求助10
14秒前
ljh完成签到,获得积分10
15秒前
斜杠小猪完成签到,获得积分10
16秒前
小宋发布了新的文献求助30
16秒前
所所应助晶晶baobao采纳,获得20
16秒前
香蕉觅云应助咎星采纳,获得10
16秒前
华丽的落寞完成签到,获得积分10
16秒前
xuejunshuai完成签到,获得积分10
17秒前
帅气雪糕发布了新的文献求助10
17秒前
18秒前
打打应助王某采纳,获得30
19秒前
20秒前
初九和猫完成签到,获得积分10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352