Bayesian Collaborative Learning for Whole-Slide Image Classification

计算机科学 人工智能 机器学习 上下文图像分类 贝叶斯概率 图像(数学) 模式识别(心理学) 计算机视觉
作者
Jin-Gang Yu,Zihao Wu,Yu Ming,Shule Deng,Qihang Wu,Zhongtang Xiong,Tianyou Yu,Gui-Song Xia,Qingping Jiang,Yuanqing Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1809-1821 被引量:8
标识
DOI:10.1109/tmi.2023.3241204
摘要

Whole-slide image (WSI) classification is fundamental to computational pathology, which is challenging in extra-high resolution, expensive manual annotation, data heterogeneity, etc. Multiple instance learning (MIL) provides a promising way towards WSI classification, which nevertheless suffers from the memory bottleneck issue inherently, due to the gigapixel high resolution. To avoid this issue, the overwhelming majority of existing approaches have to decouple the feature encoder and the MIL aggregator in MIL networks, which may largely degrade the performance. Towards this end, this paper presents a Bayesian Collaborative Learning (BCL) framework to address the memory bottleneck issue with WSI classification. Our basic idea is to introduce an auxiliary patch classifier to interact with the target MIL classifier to be learned, so that the feature encoder and the MIL aggregator in the MIL classifier can be learned collaboratively while preventing the memory bottleneck issue. Such a collaborative learning procedure is formulated under a unified Bayesian probabilistic framework and a principled Expectation-Maximization algorithm is developed to infer the optimal model parameters iteratively. As an implementation of the E-step, an effective quality-aware pseudo labeling strategy is also suggested. The proposed BCL is extensively evaluated on three publicly available WSI datasets, i.e., CAMELYON16, TCGA-NSCLC and TCGA-RCC, achieving an AUC of 95.6%, 96.0% and 97.5% respectively, which consistently outperforms all the methods compared. Comprehensive analysis and discussion will also be presented for in-depth understanding of the method. To promote future work, our source code is released at: https://github.com/Zero-We/BCL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dinhogj完成签到,获得积分10
1秒前
zyw完成签到 ,获得积分10
5秒前
王小凡完成签到 ,获得积分10
7秒前
CAOHOU应助dddd采纳,获得10
9秒前
Smiling完成签到 ,获得积分10
14秒前
小林神完成签到,获得积分10
15秒前
xiaofenzi完成签到,获得积分10
19秒前
mix完成签到 ,获得积分10
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
Banff完成签到,获得积分10
28秒前
28秒前
baomingqiu完成签到 ,获得积分10
30秒前
MS903完成签到 ,获得积分10
31秒前
哈哈哈发布了新的文献求助10
31秒前
fuws完成签到 ,获得积分10
31秒前
关外李少发布了新的文献求助10
32秒前
xzy998应助科研通管家采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得10
33秒前
jueshadi完成签到 ,获得积分10
35秒前
轻语完成签到 ,获得积分10
37秒前
39秒前
star完成签到,获得积分10
39秒前
小李完成签到 ,获得积分10
40秒前
CJW完成签到 ,获得积分10
41秒前
华理附院孙文博完成签到 ,获得积分10
41秒前
zyz完成签到,获得积分10
43秒前
fomo完成签到,获得积分10
46秒前
ding应助cavendipeng采纳,获得10
47秒前
终于花开日完成签到 ,获得积分10
49秒前
K. G.完成签到,获得积分0
49秒前
沙里飞完成签到 ,获得积分10
50秒前
bing完成签到,获得积分10
52秒前
友好语风完成签到,获得积分10
53秒前
54秒前
bigpluto完成签到,获得积分10
55秒前
K先生完成签到 ,获得积分10
57秒前
CLTTTt完成签到,获得积分10
57秒前
易水寒完成签到 ,获得积分10
57秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015