Bayesian Collaborative Learning for Whole-Slide Image Classification

计算机科学 人工智能 机器学习 上下文图像分类 贝叶斯概率 图像(数学) 模式识别(心理学) 计算机视觉
作者
Jin-Gang Yu,Zihao Wu,Yu Ming,Shule Deng,Qihang Wu,Zhongtang Xiong,Tianyou Yu,Gui-Song Xia,Qingping Jiang,Yuanqing Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1809-1821 被引量:8
标识
DOI:10.1109/tmi.2023.3241204
摘要

Whole-slide image (WSI) classification is fundamental to computational pathology, which is challenging in extra-high resolution, expensive manual annotation, data heterogeneity, etc. Multiple instance learning (MIL) provides a promising way towards WSI classification, which nevertheless suffers from the memory bottleneck issue inherently, due to the gigapixel high resolution. To avoid this issue, the overwhelming majority of existing approaches have to decouple the feature encoder and the MIL aggregator in MIL networks, which may largely degrade the performance. Towards this end, this paper presents a Bayesian Collaborative Learning (BCL) framework to address the memory bottleneck issue with WSI classification. Our basic idea is to introduce an auxiliary patch classifier to interact with the target MIL classifier to be learned, so that the feature encoder and the MIL aggregator in the MIL classifier can be learned collaboratively while preventing the memory bottleneck issue. Such a collaborative learning procedure is formulated under a unified Bayesian probabilistic framework and a principled Expectation-Maximization algorithm is developed to infer the optimal model parameters iteratively. As an implementation of the E-step, an effective quality-aware pseudo labeling strategy is also suggested. The proposed BCL is extensively evaluated on three publicly available WSI datasets, i.e., CAMELYON16, TCGA-NSCLC and TCGA-RCC, achieving an AUC of 95.6%, 96.0% and 97.5% respectively, which consistently outperforms all the methods compared. Comprehensive analysis and discussion will also be presented for in-depth understanding of the method. To promote future work, our source code is released at: https://github.com/Zero-We/BCL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MJ完成签到 ,获得积分10
刚刚
3秒前
搜集达人应助mumu采纳,获得10
6秒前
liliziwei完成签到,获得积分20
8秒前
1459发布了新的文献求助10
10秒前
无花果应助胖胖采纳,获得10
11秒前
liliziwei发布了新的文献求助10
11秒前
LiuJinhui完成签到,获得积分10
18秒前
18秒前
20秒前
竹焚完成签到 ,获得积分10
23秒前
23秒前
BJ_whc发布了新的文献求助10
24秒前
茂茂357发布了新的文献求助10
24秒前
24秒前
28秒前
29秒前
小萌发布了新的文献求助10
29秒前
研友_VZG7GZ应助陈运气采纳,获得10
34秒前
多情的元容完成签到,获得积分10
42秒前
42秒前
幸福大白发布了新的文献求助10
44秒前
陈运气发布了新的文献求助10
46秒前
奇迹探索者完成签到,获得积分10
48秒前
茂茂357完成签到,获得积分10
49秒前
55秒前
小马甲应助堀江真夏采纳,获得10
56秒前
传奇3应助紫色奶萨采纳,获得10
57秒前
脑洞疼应助奇迹探索者采纳,获得10
59秒前
幸福遥完成签到,获得积分10
59秒前
花花燕发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
陈天爱学习完成签到,获得积分10
1分钟前
lck发布了新的文献求助20
1分钟前
刘YF发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161864
求助须知:如何正确求助?哪些是违规求助? 2813088
关于积分的说明 7898593
捐赠科研通 2472111
什么是DOI,文献DOI怎么找? 1316332
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129