Bayesian Collaborative Learning for Whole-Slide Image Classification

计算机科学 人工智能 机器学习 上下文图像分类 贝叶斯概率 图像(数学) 模式识别(心理学) 计算机视觉
作者
Jin-Gang Yu,Zihao Wu,Yu Ming,Shule Deng,Qihang Wu,Zhongtang Xiong,Tianyou Yu,Gui-Song Xia,Qingping Jiang,Yuanqing Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1809-1821 被引量:8
标识
DOI:10.1109/tmi.2023.3241204
摘要

Whole-slide image (WSI) classification is fundamental to computational pathology, which is challenging in extra-high resolution, expensive manual annotation, data heterogeneity, etc. Multiple instance learning (MIL) provides a promising way towards WSI classification, which nevertheless suffers from the memory bottleneck issue inherently, due to the gigapixel high resolution. To avoid this issue, the overwhelming majority of existing approaches have to decouple the feature encoder and the MIL aggregator in MIL networks, which may largely degrade the performance. Towards this end, this paper presents a Bayesian Collaborative Learning (BCL) framework to address the memory bottleneck issue with WSI classification. Our basic idea is to introduce an auxiliary patch classifier to interact with the target MIL classifier to be learned, so that the feature encoder and the MIL aggregator in the MIL classifier can be learned collaboratively while preventing the memory bottleneck issue. Such a collaborative learning procedure is formulated under a unified Bayesian probabilistic framework and a principled Expectation-Maximization algorithm is developed to infer the optimal model parameters iteratively. As an implementation of the E-step, an effective quality-aware pseudo labeling strategy is also suggested. The proposed BCL is extensively evaluated on three publicly available WSI datasets, i.e., CAMELYON16, TCGA-NSCLC and TCGA-RCC, achieving an AUC of 95.6%, 96.0% and 97.5% respectively, which consistently outperforms all the methods compared. Comprehensive analysis and discussion will also be presented for in-depth understanding of the method. To promote future work, our source code is released at: https://github.com/Zero-We/BCL .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迫切发布了新的文献求助10
刚刚
1秒前
1秒前
甲甲胍胍发布了新的文献求助10
1秒前
2秒前
2秒前
碎碎发布了新的文献求助10
2秒前
2秒前
yuanyuan发布了新的文献求助10
5秒前
GGbond发布了新的文献求助10
5秒前
GGbond发布了新的文献求助10
5秒前
GGbond发布了新的文献求助10
5秒前
GGbond发布了新的文献求助10
5秒前
GGbond发布了新的文献求助10
5秒前
hyt发布了新的文献求助10
7秒前
玻丽露露完成签到,获得积分10
8秒前
杜青发布了新的文献求助10
8秒前
所所应助Denmark采纳,获得10
8秒前
自然冬卉发布了新的文献求助10
9秒前
9秒前
JamesPei应助楊子采纳,获得10
10秒前
dmxhh发布了新的文献求助10
10秒前
11秒前
阿修罗完成签到,获得积分10
12秒前
12秒前
干净寻冬应助廖喜林采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
orixero应助xiaoz采纳,获得10
14秒前
善学以致用应助勤恳寒安采纳,获得10
14秒前
tucohy完成签到 ,获得积分10
14秒前
renjian发布了新的文献求助10
15秒前
16秒前
黄家康发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
鱼叮叮完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790