已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-Supervised Image Denoising for Real-World Images With Context-Aware Transformer

人工智能 计算机科学 模式识别(心理学) 降噪 计算机视觉 特征提取 变压器 工程类 电压 电气工程
作者
Dan Zhang,Fangfang Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 14340-14349 被引量:44
标识
DOI:10.1109/access.2023.3243829
摘要

In recent years, the development of deep learning has been pushing image denoising to a new level. Among them, self-supervised denoising is increasingly popular because it does not require any prior knowledge. Most of the existing self-supervised methods are based on convolutional neural networks (CNN), which are restricted by the locality of the receptive field and would cause color shifts or textures loss. In this paper, we propose a novel Denoise Transformer for real-world image denoising, which is mainly constructed with Context-aware Denoise Transformer (CADT) units and Secondary Noise Extractor (SNE) block. CADT is designed as a dual-branch structure, where the global branch uses a window-based Transformer encoder to extract the global information, while the local branch focuses on the extraction of local features with small receptive field. By incorporating CADT as basic components, we build a hierarchical network to directly learn the noise distribution information through residual learning and obtain the first stage denoised output. Then, we design SNE in low computation for secondary global noise extraction. Finally the blind spots are collected from the Denoise Transformer output and reconstructed, forming the final denoised image. Extensive experiments on the real-world SIDD benchmark achieve 50.62/0.990 for PSNR/SSIM, which is competitive with the current state-of-the-art method and only 0.17/0.001 lower. Visual comparisons on public sRGB, Raw-RGB and greyscale datasets prove that our proposed Denoise Transformer has a competitive performance, especially on blurred textures and low-light images, without using additional knowledge, e.g., noise level or noise type, regarding the underlying unknown noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺的青旋完成签到 ,获得积分10
1秒前
1秒前
北杨发布了新的文献求助10
1秒前
Hello应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
nenoaowu应助科研通管家采纳,获得30
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
6秒前
6秒前
顺心的安珊完成签到 ,获得积分10
8秒前
能干的语芙完成签到 ,获得积分10
8秒前
twk发布了新的文献求助10
9秒前
浚稚完成签到 ,获得积分10
10秒前
大帅比完成签到 ,获得积分10
10秒前
666完成签到,获得积分10
11秒前
nancyshine完成签到,获得积分10
11秒前
北杨完成签到,获得积分10
12秒前
斑其发布了新的文献求助10
12秒前
学土木的凯蒂猫完成签到 ,获得积分10
13秒前
想不出来完成签到 ,获得积分10
16秒前
lillian完成签到,获得积分20
18秒前
twk完成签到,获得积分10
18秒前
klio完成签到 ,获得积分10
19秒前
19秒前
rainbow完成签到 ,获得积分0
22秒前
xiaojun发布了新的文献求助30
23秒前
把的蛮耐得烦完成签到,获得积分10
28秒前
传奇3应助YY88687321采纳,获得10
29秒前
哔噗哔噗完成签到 ,获得积分10
30秒前
在水一方应助清爽的翠绿采纳,获得10
31秒前
芽芽豆完成签到 ,获得积分10
33秒前
FashionBoy应助wcy采纳,获得10
34秒前
平常的羊完成签到 ,获得积分10
39秒前
snah完成签到 ,获得积分10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674205
求助须知:如何正确求助?哪些是违规求助? 3229618
关于积分的说明 9786440
捐赠科研通 2940150
什么是DOI,文献DOI怎么找? 1611710
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736352