Learning Oriented Object Detection via Naive Geometric Computing

计算机科学 人工智能 对象(语法) 计算机视觉
作者
Yanjie Wang,Zhijun Zhang,Wenhui Xu,Liqun Chen,Guodong Wang,Luxin Yan,Sheng Zhong,Xu Zou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 10513-10525 被引量:12
标识
DOI:10.1109/tnnls.2023.3242323
摘要

Detecting oriented objects along with estimating their rotation information is one crucial step for image analysis, especially for remote sensing images. Despite that many methods proposed recently have achieved remarkable performance, most of them directly learn to predict object directions under the supervision of only one (e.g., the rotation angle) or a few (e.g., several coordinates) groundtruth (GT) values individually. Oriented object detection would be more accurate and robust if extra constraints, with respect to proposal and rotation information regression, are adopted for joint supervision during training. To this end, we propose a mechanism that simultaneously learns the regression of horizontal proposals, oriented proposals, and rotation angles of objects in a consistent manner, via naive geometric computing, as one additional steady constraint . An oriented center prior guided label assignment strategy is proposed for further enhancing the quality of proposals, yielding better performance. Extensive experiments on six datasets demonstrate the model equipped with our idea significantly outperforms the baseline by a large margin and several new state-of-the-art results are achieved without any extra computational burden during inference. Our proposed idea is simple and intuitive that can be readily implemented. Source codes are publicly available at: https://github.com/wangWilson/CGCDet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天玩发布了新的文献求助10
刚刚
刚刚
2秒前
2秒前
2秒前
所所应助Lucille采纳,获得10
3秒前
蓝絮絮发布了新的文献求助10
3秒前
小小完成签到 ,获得积分10
4秒前
七个歪完成签到,获得积分10
4秒前
领导范儿应助秋吉儿采纳,获得10
5秒前
linww发布了新的文献求助10
7秒前
FashionBoy应助山橘月采纳,获得10
8秒前
完美世界应助谭小谭采纳,获得10
8秒前
BK1BK22发布了新的文献求助10
8秒前
mmyhn应助yaoyao采纳,获得10
8秒前
9秒前
可爱的函函应助RenSiyu采纳,获得10
9秒前
txy发布了新的文献求助10
9秒前
Lucas应助伟卫采纳,获得10
10秒前
huan完成签到,获得积分10
10秒前
10秒前
BK1BK22完成签到 ,获得积分10
11秒前
tjl发布了新的文献求助20
12秒前
郑qqqq发布了新的文献求助10
13秒前
我是老大应助ddd采纳,获得10
13秒前
13秒前
15秒前
15秒前
xff关注了科研通微信公众号
16秒前
16秒前
16秒前
谢雨霁发布了新的文献求助10
16秒前
txy完成签到,获得积分10
17秒前
Nanw关注了科研通微信公众号
17秒前
田様应助墨羽采纳,获得10
17秒前
山橘月完成签到,获得积分10
17秒前
秋吉儿完成签到,获得积分10
18秒前
18秒前
泡泡完成签到,获得积分10
20秒前
大个应助xushanqi采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543718
求助须知:如何正确求助?哪些是违规求助? 3121033
关于积分的说明 9345352
捐赠科研通 2819128
什么是DOI,文献DOI怎么找? 1549968
邀请新用户注册赠送积分活动 722341
科研通“疑难数据库(出版商)”最低求助积分说明 713153