Causal Inference in Transcriptome-Wide Association Studies with Invalid Instruments and GWAS Summary Data

孟德尔随机化 全基因组关联研究 因果推理 推论 混淆 计算机科学 样本量测定 遗传关联 工具变量 回归 错误发现率 单核苷酸多态性 统计 计算生物学 人工智能 生物 数学 机器学习 遗传学 基因 遗传变异 基因型
作者
Haoran Xue,Xiaotong Shen,Wei Pan
出处
期刊:Journal of the American Statistical Association [Taylor & Francis]
卷期号:: 1-27 被引量:1
标识
DOI:10.1080/01621459.2023.2183127
摘要

Transcriptome-Wide Association Studies (TWAS) have recently emerged as a popular tool to discover (putative) causal genes by integrating an outcome GWAS dataset with another gene expression/transcriptome GWAS (called eQTL) dataset. In our motivating and target application, we’d like to identify causal genes for Low-Density Lipoprotein cholesterol (LDL), which is crucial for developing new treatments for hyperlipidemia and cardiovascular diseases. The statistical principle underlying TWAS is (two-sample) two-stage least squares (2SLS) using multiple correlated SNPs as instrumental variables (IVs); it is closely related to typical (two-sample) Mendelian randomization (MR) using independent SNPs as IVs, which is expected to be impractical and lower-powered for TWAS (and some other) applications. However, often some of the SNPs used may not be valid IVs, for example, due to the widespread pleiotropy of their direct effects on the outcome not mediated through the gene of interest, leading to false conclusions by TWAS (or MR). Building on recent advances in sparse regression, we propose a robust and efficient inferential method to account for both hidden confounding and some invalid IVs via two-stage constrained maximum likelihood (2ScML), an extension of 2SLS. We first develop the proposed method with individual-level data, then extend it both theoretically and computationally to GWAS summary data for the most popular two-sample TWAS design, to which almost all existing robust IV regression methods are however not applicable. We show that the proposed method achieves asymptotically valid statistical inference on causal effects, demonstrating its wider applicability and superior finite-sample performance over the standard 2SLS/TWAS (and MR). We apply the methods to identify putative causal genes for LDL by integrating large-scale lipid GWAS summary data with eQTL data. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助泯工采纳,获得10
刚刚
思源应助黄文怡采纳,获得10
1秒前
loong完成签到,获得积分10
1秒前
哈哈哈发布了新的文献求助10
1秒前
QQWRV完成签到,获得积分10
1秒前
2秒前
禮貌发布了新的文献求助10
3秒前
星燃发布了新的文献求助10
3秒前
东十八完成签到 ,获得积分10
4秒前
sophie发布了新的文献求助10
5秒前
星辰大海应助独特纸飞机采纳,获得10
5秒前
大宇完成签到,获得积分10
8秒前
Hello应助辣辣采纳,获得10
8秒前
早日发paper完成签到,获得积分10
8秒前
10秒前
10秒前
11秒前
keyan发布了新的文献求助30
12秒前
张静枝发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
开朗篮球发布了新的文献求助10
17秒前
魔幻安筠发布了新的文献求助10
17秒前
RMY完成签到 ,获得积分10
18秒前
黄文怡发布了新的文献求助10
19秒前
19秒前
渊思发布了新的文献求助10
19秒前
小野菌发布了新的文献求助10
19秒前
19秒前
da_line应助U9A采纳,获得10
20秒前
Xu发布了新的文献求助10
20秒前
21秒前
sophie完成签到,获得积分10
21秒前
Youatpome发布了新的文献求助10
22秒前
RoKing发布了新的文献求助10
23秒前
暮鼓完成签到,获得积分20
24秒前
24秒前
25秒前
开朗篮球完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578