A Systematic Review on Imbalanced Learning Methods in Intelligent Fault Diagnosis

断层(地质) 过程(计算) 计算机科学 领域(数学) 人工智能 机器学习 集合(抽象数据类型) 数据处理 数据挖掘 工程类 数学 地震学 纯数学 程序设计语言 地质学 操作系统
作者
Zhijun Ren,Tantao Lin,Ke Feng,Yongsheng Zhu,Zheng Liu,Ke Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-35 被引量:58
标识
DOI:10.1109/tim.2023.3246470
摘要

The theoretical developments of data -driven fault diagnosis methods have yielded fruitful achievements and significantly benefited industry practices. However, most methods are developed based on the assumption of data balance, which is incompatible with engineering scenarios. First, the normal state accounts for the majority of the equipment’s lifespan; second, the probability of various faults varies, both of which result in an imbalance in the data. The consequence of data imbalance in intelligent fault diagnosis methods has attracted extensive attention from the research community, and a significant number of papers have been published. Nevertheless, a comprehensive review of achievements in this field is still missing, and the research perspectives have not been thoroughly investigated. To end this, we review and discuss all the research achievements in fault diagnosis under data imbalance in this survey, based on to the best of our knowledge. First, the existing imbalanced learning methods are classified into three categories: data processing methods, model construction methods, and training optimization methods. Then, the three methodologies are introduced and discussed in detail: the data processing method is to optimize the inputs of the intelligent fault diagnosis model so that the imbalance rate of the sample set involved in training is reduced; the model construction method is to design the structure and the features of the intelligent fault diagnosis model so that the model itself is resistant to the effects of imbalance; the training optimization method is an optimization of the training process for intelligent fault diagnosis models, raising the importance of the minority class in the training. Finally, this survey summarizes the prospects of the imbalanced learning problem in intelligent fault diagnosis, discusses the possible solutions, and provides some recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助毕业去卖烤肠采纳,获得10
刚刚
刚刚
1秒前
bloodice发布了新的文献求助10
1秒前
坦率水香完成签到,获得积分10
2秒前
2秒前
3秒前
Jasper应助帅气绮露采纳,获得10
3秒前
CodeCraft应助HHM采纳,获得10
4秒前
4秒前
午见千山应助小巧的灵竹采纳,获得10
7秒前
cwy完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
简单果汁完成签到,获得积分10
11秒前
坦率水香发布了新的文献求助10
11秒前
无花果应助谨慎冰薇采纳,获得10
12秒前
小马甲应助dan1029采纳,获得10
12秒前
Lcxy发布了新的文献求助30
12秒前
12秒前
隐形路灯完成签到 ,获得积分10
12秒前
12秒前
我是老大应助BHZ采纳,获得10
13秒前
cjcbb发布了新的文献求助10
13秒前
halll完成签到,获得积分10
14秒前
九九发布了新的文献求助10
14秒前
Edward chan完成签到,获得积分20
14秒前
杳鸢应助bloodice采纳,获得10
15秒前
帅气绮露发布了新的文献求助10
15秒前
zhenzhen完成签到,获得积分10
15秒前
16秒前
16秒前
Zj完成签到,获得积分10
16秒前
17秒前
Edward chan发布了新的文献求助10
17秒前
英勇绮南发布了新的文献求助10
17秒前
欢喜发卡完成签到,获得积分20
19秒前
完美世界应助cjcbb采纳,获得10
20秒前
独特觅翠应助齐正采纳,获得20
20秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218664
求助须知:如何正确求助?哪些是违规求助? 2867783
关于积分的说明 8158089
捐赠科研通 2534833
什么是DOI,文献DOI怎么找? 1367236
科研通“疑难数据库(出版商)”最低求助积分说明 644974
邀请新用户注册赠送积分活动 618153