已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Systematic Review on Imbalanced Learning Methods in Intelligent Fault Diagnosis

断层(地质) 过程(计算) 计算机科学 领域(数学) 人工智能 机器学习 集合(抽象数据类型) 数据处理 数据挖掘 工程类 数学 操作系统 地质学 地震学 程序设计语言 纯数学
作者
Zhijun Ren,Tantao Lin,Ke Feng,Yongsheng Zhu,Zheng Liu,Ke Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-35 被引量:111
标识
DOI:10.1109/tim.2023.3246470
摘要

The theoretical developments of data -driven fault diagnosis methods have yielded fruitful achievements and significantly benefited industry practices. However, most methods are developed based on the assumption of data balance, which is incompatible with engineering scenarios. First, the normal state accounts for the majority of the equipment’s lifespan; second, the probability of various faults varies, both of which result in an imbalance in the data. The consequence of data imbalance in intelligent fault diagnosis methods has attracted extensive attention from the research community, and a significant number of papers have been published. Nevertheless, a comprehensive review of achievements in this field is still missing, and the research perspectives have not been thoroughly investigated. To end this, we review and discuss all the research achievements in fault diagnosis under data imbalance in this survey, based on to the best of our knowledge. First, the existing imbalanced learning methods are classified into three categories: data processing methods, model construction methods, and training optimization methods. Then, the three methodologies are introduced and discussed in detail: the data processing method is to optimize the inputs of the intelligent fault diagnosis model so that the imbalance rate of the sample set involved in training is reduced; the model construction method is to design the structure and the features of the intelligent fault diagnosis model so that the model itself is resistant to the effects of imbalance; the training optimization method is an optimization of the training process for intelligent fault diagnosis models, raising the importance of the minority class in the training. Finally, this survey summarizes the prospects of the imbalanced learning problem in intelligent fault diagnosis, discusses the possible solutions, and provides some recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
四玖玖发布了新的文献求助10
1秒前
cnspower发布了新的文献求助100
1秒前
深情安青应助能干寒松采纳,获得10
3秒前
涛涛完成签到,获得积分20
3秒前
潇洒荷花完成签到 ,获得积分10
3秒前
脆啵啵马克宝完成签到 ,获得积分10
4秒前
单调的蜜蜂完成签到,获得积分10
4秒前
久桃发布了新的文献求助10
7秒前
ya发布了新的文献求助200
8秒前
12秒前
能干寒松完成签到,获得积分10
12秒前
Cc完成签到 ,获得积分10
13秒前
14秒前
15秒前
久桃完成签到,获得积分10
16秒前
18秒前
19秒前
20秒前
21秒前
四玖玖完成签到,获得积分10
22秒前
充电宝应助liu采纳,获得10
23秒前
刘111完成签到,获得积分10
27秒前
桃桃子发布了新的文献求助10
28秒前
ya完成签到,获得积分10
31秒前
xingsixs完成签到 ,获得积分10
33秒前
ruru发布了新的文献求助10
33秒前
抚琴祛魅完成签到 ,获得积分10
37秒前
37秒前
蓝色天空完成签到,获得积分10
39秒前
桃桃子完成签到,获得积分10
41秒前
41秒前
45秒前
风月难安发布了新的文献求助10
45秒前
孤芳自赏IrisKing完成签到 ,获得积分10
47秒前
CodeCraft应助Huding采纳,获得10
50秒前
52秒前
健康的莺完成签到 ,获得积分10
53秒前
Leslie完成签到,获得积分10
53秒前
搜集达人应助久等雨归采纳,获得10
54秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705551
求助须知:如何正确求助?哪些是违规求助? 5164845
关于积分的说明 15245734
捐赠科研通 4859361
什么是DOI,文献DOI怎么找? 2607785
邀请新用户注册赠送积分活动 1558875
关于科研通互助平台的介绍 1516424