A Systematic Review on Imbalanced Learning Methods in Intelligent Fault Diagnosis

断层(地质) 过程(计算) 计算机科学 领域(数学) 人工智能 机器学习 集合(抽象数据类型) 数据处理 数据挖掘 工程类 数学 操作系统 地质学 地震学 程序设计语言 纯数学
作者
Zhijun Ren,Tantao Lin,Ke Feng,Yongsheng Zhu,Zheng Liu,Ke Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-35 被引量:76
标识
DOI:10.1109/tim.2023.3246470
摘要

The theoretical developments of data -driven fault diagnosis methods have yielded fruitful achievements and significantly benefited industry practices. However, most methods are developed based on the assumption of data balance, which is incompatible with engineering scenarios. First, the normal state accounts for the majority of the equipment’s lifespan; second, the probability of various faults varies, both of which result in an imbalance in the data. The consequence of data imbalance in intelligent fault diagnosis methods has attracted extensive attention from the research community, and a significant number of papers have been published. Nevertheless, a comprehensive review of achievements in this field is still missing, and the research perspectives have not been thoroughly investigated. To end this, we review and discuss all the research achievements in fault diagnosis under data imbalance in this survey, based on to the best of our knowledge. First, the existing imbalanced learning methods are classified into three categories: data processing methods, model construction methods, and training optimization methods. Then, the three methodologies are introduced and discussed in detail: the data processing method is to optimize the inputs of the intelligent fault diagnosis model so that the imbalance rate of the sample set involved in training is reduced; the model construction method is to design the structure and the features of the intelligent fault diagnosis model so that the model itself is resistant to the effects of imbalance; the training optimization method is an optimization of the training process for intelligent fault diagnosis models, raising the importance of the minority class in the training. Finally, this survey summarizes the prospects of the imbalanced learning problem in intelligent fault diagnosis, discusses the possible solutions, and provides some recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
1秒前
等待的夜香完成签到,获得积分10
3秒前
Chimmy发布了新的文献求助10
4秒前
YAO发布了新的文献求助10
4秒前
water应助薛定谔的猫采纳,获得10
5秒前
HonamC发布了新的文献求助10
6秒前
7秒前
8秒前
10秒前
12秒前
坚定的可愁完成签到,获得积分10
13秒前
阿克66发布了新的文献求助10
14秒前
14秒前
14秒前
56565发布了新的文献求助10
14秒前
归尘发布了新的文献求助10
14秒前
15秒前
HonamC完成签到,获得积分10
15秒前
Gabriella完成签到,获得积分10
15秒前
郭郭完成签到,获得积分10
16秒前
遗憾完成签到,获得积分20
16秒前
幸福大白发布了新的文献求助10
17秒前
核桃发布了新的文献求助10
17秒前
17秒前
18秒前
研友_VZG7GZ应助Chimmy采纳,获得10
18秒前
19秒前
19秒前
思源应助Arzu采纳,获得10
21秒前
郭郭发布了新的文献求助10
22秒前
幸福大白发布了新的文献求助10
23秒前
23秒前
刘枫其发布了新的文献求助10
24秒前
小小鱼完成签到,获得积分10
26秒前
26秒前
26秒前
27秒前
look完成签到,获得积分10
28秒前
zhaoyichun发布了新的文献求助10
29秒前
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712