已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Systematic Review on Imbalanced Learning Methods in Intelligent Fault Diagnosis

断层(地质) 过程(计算) 计算机科学 领域(数学) 人工智能 机器学习 集合(抽象数据类型) 数据处理 数据挖掘 工程类 数学 操作系统 地质学 地震学 程序设计语言 纯数学
作者
Zhijun Ren,Tantao Lin,Ke Feng,Yongsheng Zhu,Zheng Liu,Ke Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-35 被引量:111
标识
DOI:10.1109/tim.2023.3246470
摘要

The theoretical developments of data -driven fault diagnosis methods have yielded fruitful achievements and significantly benefited industry practices. However, most methods are developed based on the assumption of data balance, which is incompatible with engineering scenarios. First, the normal state accounts for the majority of the equipment’s lifespan; second, the probability of various faults varies, both of which result in an imbalance in the data. The consequence of data imbalance in intelligent fault diagnosis methods has attracted extensive attention from the research community, and a significant number of papers have been published. Nevertheless, a comprehensive review of achievements in this field is still missing, and the research perspectives have not been thoroughly investigated. To end this, we review and discuss all the research achievements in fault diagnosis under data imbalance in this survey, based on to the best of our knowledge. First, the existing imbalanced learning methods are classified into three categories: data processing methods, model construction methods, and training optimization methods. Then, the three methodologies are introduced and discussed in detail: the data processing method is to optimize the inputs of the intelligent fault diagnosis model so that the imbalance rate of the sample set involved in training is reduced; the model construction method is to design the structure and the features of the intelligent fault diagnosis model so that the model itself is resistant to the effects of imbalance; the training optimization method is an optimization of the training process for intelligent fault diagnosis models, raising the importance of the minority class in the training. Finally, this survey summarizes the prospects of the imbalanced learning problem in intelligent fault diagnosis, discusses the possible solutions, and provides some recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lct360完成签到,获得积分10
刚刚
英俊的铭应助fisker采纳,获得10
1秒前
shareef发布了新的文献求助10
4秒前
7秒前
7秒前
花影完成签到 ,获得积分10
9秒前
潇洒荔枝给潇洒荔枝的求助进行了留言
10秒前
10秒前
yyywwwddd333发布了新的文献求助10
10秒前
HJJHJH发布了新的文献求助10
10秒前
坚定的代珊完成签到 ,获得积分10
11秒前
juaner发布了新的文献求助10
12秒前
merry6669完成签到 ,获得积分10
12秒前
12秒前
JamesPei应助极光采纳,获得10
14秒前
今我来思完成签到 ,获得积分10
14秒前
15秒前
打打应助HJJHJH采纳,获得10
15秒前
浮游应助毅诚菌采纳,获得10
16秒前
cjy发布了新的文献求助10
18秒前
耍酷寒烟关注了科研通微信公众号
18秒前
19秒前
石头完成签到,获得积分10
20秒前
yyywwwddd333完成签到,获得积分10
21秒前
22秒前
妮妮发布了新的文献求助10
22秒前
lyt完成签到,获得积分10
22秒前
极光完成签到,获得积分10
23秒前
xcxcc发布了新的文献求助10
25秒前
27秒前
27秒前
极光发布了新的文献求助10
28秒前
干净博涛完成签到 ,获得积分10
28秒前
小马甲应助老实凝蕊采纳,获得10
30秒前
31秒前
皓民发布了新的文献求助10
32秒前
jing完成签到 ,获得积分10
32秒前
飞翔的蒲公英完成签到,获得积分10
33秒前
李健应助Ao_Jiang采纳,获得10
34秒前
桃子发布了新的文献求助10
37秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449302
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263669
捐赠科研通 4480533
什么是DOI,文献DOI怎么找? 2454467
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1420986