亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Systematic Review on Imbalanced Learning Methods in Intelligent Fault Diagnosis

断层(地质) 过程(计算) 计算机科学 领域(数学) 人工智能 机器学习 集合(抽象数据类型) 数据处理 数据挖掘 工程类 数学 操作系统 地质学 地震学 程序设计语言 纯数学
作者
Zhijun Ren,Tantao Lin,Ke Feng,Yongsheng Zhu,Zheng Liu,Ke Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-35 被引量:111
标识
DOI:10.1109/tim.2023.3246470
摘要

The theoretical developments of data -driven fault diagnosis methods have yielded fruitful achievements and significantly benefited industry practices. However, most methods are developed based on the assumption of data balance, which is incompatible with engineering scenarios. First, the normal state accounts for the majority of the equipment’s lifespan; second, the probability of various faults varies, both of which result in an imbalance in the data. The consequence of data imbalance in intelligent fault diagnosis methods has attracted extensive attention from the research community, and a significant number of papers have been published. Nevertheless, a comprehensive review of achievements in this field is still missing, and the research perspectives have not been thoroughly investigated. To end this, we review and discuss all the research achievements in fault diagnosis under data imbalance in this survey, based on to the best of our knowledge. First, the existing imbalanced learning methods are classified into three categories: data processing methods, model construction methods, and training optimization methods. Then, the three methodologies are introduced and discussed in detail: the data processing method is to optimize the inputs of the intelligent fault diagnosis model so that the imbalance rate of the sample set involved in training is reduced; the model construction method is to design the structure and the features of the intelligent fault diagnosis model so that the model itself is resistant to the effects of imbalance; the training optimization method is an optimization of the training process for intelligent fault diagnosis models, raising the importance of the minority class in the training. Finally, this survey summarizes the prospects of the imbalanced learning problem in intelligent fault diagnosis, discusses the possible solutions, and provides some recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kukudou2完成签到,获得积分10
2秒前
哈哈哈完成签到 ,获得积分10
6秒前
11秒前
14秒前
王绪威发布了新的文献求助10
21秒前
科研通AI5应助王绪威采纳,获得10
33秒前
chenlc971125完成签到 ,获得积分10
37秒前
treat4869完成签到 ,获得积分10
1分钟前
共享精神应助贺喆采纳,获得10
1分钟前
快乐的笑阳完成签到,获得积分10
1分钟前
开心成威完成签到 ,获得积分10
1分钟前
润泽完成签到,获得积分10
1分钟前
戈屿完成签到 ,获得积分10
1分钟前
2分钟前
灵巧嚓茶发布了新的文献求助10
2分钟前
2分钟前
Thanks完成签到 ,获得积分10
2分钟前
Orange应助小冯看不懂采纳,获得10
2分钟前
Nuyoah完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
轻语完成签到 ,获得积分10
2分钟前
冰西瓜完成签到 ,获得积分0
2分钟前
2分钟前
噫吁嚱完成签到 ,获得积分10
2分钟前
Augustines完成签到,获得积分10
2分钟前
2分钟前
lvsehx发布了新的文献求助10
2分钟前
李健应助小冯看不懂采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Hands发布了新的文献求助10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126912
求助须知:如何正确求助?哪些是违规求助? 4330184
关于积分的说明 13492980
捐赠科研通 4165597
什么是DOI,文献DOI怎么找? 2283452
邀请新用户注册赠送积分活动 1284485
关于科研通互助平台的介绍 1224316