A Systematic Review on Imbalanced Learning Methods in Intelligent Fault Diagnosis

断层(地质) 过程(计算) 计算机科学 领域(数学) 人工智能 机器学习 集合(抽象数据类型) 数据处理 数据挖掘 工程类 数学 操作系统 地质学 地震学 程序设计语言 纯数学
作者
Zhijun Ren,Tantao Lin,Ke Feng,Yongsheng Zhu,Zheng Liu,Ke Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-35 被引量:111
标识
DOI:10.1109/tim.2023.3246470
摘要

The theoretical developments of data -driven fault diagnosis methods have yielded fruitful achievements and significantly benefited industry practices. However, most methods are developed based on the assumption of data balance, which is incompatible with engineering scenarios. First, the normal state accounts for the majority of the equipment’s lifespan; second, the probability of various faults varies, both of which result in an imbalance in the data. The consequence of data imbalance in intelligent fault diagnosis methods has attracted extensive attention from the research community, and a significant number of papers have been published. Nevertheless, a comprehensive review of achievements in this field is still missing, and the research perspectives have not been thoroughly investigated. To end this, we review and discuss all the research achievements in fault diagnosis under data imbalance in this survey, based on to the best of our knowledge. First, the existing imbalanced learning methods are classified into three categories: data processing methods, model construction methods, and training optimization methods. Then, the three methodologies are introduced and discussed in detail: the data processing method is to optimize the inputs of the intelligent fault diagnosis model so that the imbalance rate of the sample set involved in training is reduced; the model construction method is to design the structure and the features of the intelligent fault diagnosis model so that the model itself is resistant to the effects of imbalance; the training optimization method is an optimization of the training process for intelligent fault diagnosis models, raising the importance of the minority class in the training. Finally, this survey summarizes the prospects of the imbalanced learning problem in intelligent fault diagnosis, discusses the possible solutions, and provides some recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
紫荆完成签到 ,获得积分10
1秒前
司空踏歌发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
夏夜微凉完成签到,获得积分10
4秒前
Nam22发布了新的文献求助10
4秒前
4秒前
Snoval完成签到,获得积分10
4秒前
干净的人达完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
曾经的无极完成签到,获得积分10
5秒前
17871635733完成签到,获得积分10
5秒前
5秒前
6秒前
爆米花应助问问问采纳,获得10
6秒前
7秒前
7秒前
xue发布了新的文献求助10
8秒前
8秒前
香蕉觅云应助Snoval采纳,获得10
8秒前
8秒前
gggggd完成签到,获得积分10
9秒前
天天快乐应助passion采纳,获得10
9秒前
青萍子林完成签到,获得积分10
9秒前
9秒前
infe完成签到,获得积分10
9秒前
稀饭发布了新的文献求助10
9秒前
司空踏歌完成签到,获得积分10
10秒前
一颗柚子发布了新的文献求助10
10秒前
10秒前
yeye发布了新的文献求助10
10秒前
hehe发布了新的文献求助10
11秒前
食杂砸完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894