A Systematic Review on Imbalanced Learning Methods in Intelligent Fault Diagnosis

断层(地质) 过程(计算) 计算机科学 领域(数学) 人工智能 机器学习 集合(抽象数据类型) 数据处理 数据挖掘 工程类 数学 操作系统 地质学 地震学 程序设计语言 纯数学
作者
Zhijun Ren,Tantao Lin,Ke Feng,Yongsheng Zhu,Zheng Liu,Ke Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-35 被引量:111
标识
DOI:10.1109/tim.2023.3246470
摘要

The theoretical developments of data -driven fault diagnosis methods have yielded fruitful achievements and significantly benefited industry practices. However, most methods are developed based on the assumption of data balance, which is incompatible with engineering scenarios. First, the normal state accounts for the majority of the equipment’s lifespan; second, the probability of various faults varies, both of which result in an imbalance in the data. The consequence of data imbalance in intelligent fault diagnosis methods has attracted extensive attention from the research community, and a significant number of papers have been published. Nevertheless, a comprehensive review of achievements in this field is still missing, and the research perspectives have not been thoroughly investigated. To end this, we review and discuss all the research achievements in fault diagnosis under data imbalance in this survey, based on to the best of our knowledge. First, the existing imbalanced learning methods are classified into three categories: data processing methods, model construction methods, and training optimization methods. Then, the three methodologies are introduced and discussed in detail: the data processing method is to optimize the inputs of the intelligent fault diagnosis model so that the imbalance rate of the sample set involved in training is reduced; the model construction method is to design the structure and the features of the intelligent fault diagnosis model so that the model itself is resistant to the effects of imbalance; the training optimization method is an optimization of the training process for intelligent fault diagnosis models, raising the importance of the minority class in the training. Finally, this survey summarizes the prospects of the imbalanced learning problem in intelligent fault diagnosis, discusses the possible solutions, and provides some recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清茶韵心发布了新的文献求助10
1秒前
1秒前
Ava应助悦耳以旋采纳,获得10
2秒前
zxm完成签到,获得积分10
2秒前
挖掘机完成签到,获得积分10
2秒前
鱼粥很好发布了新的文献求助10
2秒前
深蓝发布了新的文献求助10
2秒前
penhuodragon关注了科研通微信公众号
3秒前
Akim应助加油女王采纳,获得10
3秒前
ll完成签到 ,获得积分20
3秒前
4秒前
htht完成签到,获得积分20
4秒前
slgzhangtao完成签到,获得积分10
4秒前
帅玉玉发布了新的文献求助10
4秒前
满意花生发布了新的文献求助10
5秒前
www123qe发布了新的文献求助10
6秒前
酷波er应助灵巧汉堡采纳,获得10
6秒前
在下想发布了新的文献求助10
7秒前
7秒前
研友_VZG7GZ应助汤圆呢醒醒采纳,获得30
7秒前
8秒前
8秒前
8秒前
清爽的乐曲完成签到,获得积分10
8秒前
独自人生完成签到,获得积分10
9秒前
科研通AI6应助积极的夏天采纳,获得10
10秒前
Silieze完成签到,获得积分10
10秒前
可爱的函函应助112采纳,获得10
11秒前
11秒前
核动力驴发布了新的文献求助10
12秒前
Fabio发布了新的文献求助10
12秒前
plmojn发布了新的文献求助10
13秒前
jing完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
JAY完成签到,获得积分10
16秒前
原本山川完成签到,获得积分10
18秒前
归宁完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997