SnS2-covalent organic framework Z-scheme van der Waals heterojunction for enhanced photocatalytic reduction of uranium (VI) in rare earth tailings wastewater

异质结 光催化 范德瓦尔斯力 化学 电子转移 材料科学 光化学 光电子学 催化作用 有机化学 分子
作者
Xin Liu,Rui‐Xiang Bi,Cheng-Rong Zhang,Qiu‐Xia Luo,Ru‐Ping Liang,Jian‐Ding Qiu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:460: 141756-141756 被引量:50
标识
DOI:10.1016/j.cej.2023.141756
摘要

Uranium removal by photocatalytic reduction is one of the most promising methods to reduce radioactive contamination in wastewater. Herein, a Z-scheme van der Waals heterojunction photocatalyst (SnS2COF) was synthesized in situ by combining covalent organic frameworks (COF) with semiconductor (SnS2) for U (VI) reduction in rare earth tailings wastewater. The synthesis method of van der Waals heterojunction is simple and solves the problem of no hanging bond in composite components. In this heterojunction, large areas of van der Waals interaction form high-speed electron transport channels. In addition, it is deduced that SnS2COF fits the Z-scheme heterojunction electron transport mode through the theoretical calculation of the ground state and excited state electron density difference and the related band structure. Under the photoexcitation, the direction of electron flow is reversed, which further promotes the separation of the photogenerated electron (e−)-hole (h+) under the action of the built-in electric field, maintains the high reducibility of the conduction band, and avoids the photocorrosion of SnS2. Compared with inorganic-inorganic heterojunction, SnS2COF has a wider light absorption range, more active sites, and higher e−-h+ separation and transfer efficiency. Therefore, it had a higher U (VI) reduction removal capacity, up to 1123.3 mg g−1, far surpassing the SnS2 and COF counterparts under ultraviolet/visible light. And the U (VI) removal rate reached 98.5 % in rare earth tailings wastewater. The design concept of organic–inorganic heterojunction materials provides an alternative strategy for improving the photocatalytic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L龙发布了新的文献求助10
刚刚
刚刚
善学以致用应助sunwending采纳,获得10
刚刚
东郭秋凌完成签到,获得积分10
刚刚
胤宸完成签到,获得积分10
1秒前
2秒前
2秒前
hohokuz完成签到,获得积分20
2秒前
一切顺遂应助Adian采纳,获得100
2秒前
2秒前
April发布了新的文献求助20
3秒前
Huaiman发布了新的文献求助10
4秒前
科研通AI5应助转角一起走采纳,获得20
4秒前
蛋炒饭完成签到,获得积分10
5秒前
执着完成签到,获得积分10
5秒前
研友_ED5GK发布了新的文献求助10
5秒前
6秒前
绿麦盲区完成签到,获得积分10
6秒前
Yvonne发布了新的文献求助10
6秒前
7秒前
7秒前
minghanl完成签到,获得积分10
8秒前
zhaomr发布了新的文献求助10
8秒前
科目三应助pbf采纳,获得20
9秒前
9秒前
9秒前
same完成签到,获得积分10
10秒前
科研通AI5应助俭朴夜雪采纳,获得30
10秒前
读研好难发布了新的文献求助10
11秒前
Adian完成签到,获得积分10
12秒前
Huaiman完成签到,获得积分10
12秒前
OvO完成签到,获得积分10
12秒前
expuery完成签到,获得积分10
12秒前
sunwending发布了新的文献求助10
12秒前
蒋时晏应助Lam采纳,获得30
13秒前
充电宝应助西子阳采纳,获得10
14秒前
OvO发布了新的文献求助10
14秒前
嗨皮y完成签到 ,获得积分20
14秒前
科研通AI2S应助majf采纳,获得10
15秒前
不知道叫什么完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762