电容器
电介质
材料科学
电容感应
储能
极化率
光电子学
电场
绝缘体(电)
极化(电化学)
电势能
能量密度
超短脉冲
工程物理
电气工程
电压
能量(信号处理)
光学
激光器
功率(物理)
物理
化学
量子力学
工程类
物理化学
分子
作者
Yajing Liu,Yang Zhang,Jing Wang,Chao Yang,Hongguang Wang,Judith L. MacManus‐Driscoll,Hao Yang,Peter A. van Aken,Weiwei Li,Ce‐Wen Nan
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2025-04-10
卷期号:388 (6743): 211-216
标识
DOI:10.1126/science.adt2703
摘要
Electrostatic dielectric capacitors with ultrahigh power densities are sought after for advanced electronic and electrical systems owing to their ultrafast charge-discharge capability. However, low energy density resulting from low breakdown strength and suppressed polarization still remains a daunting challenge for practical applications. We propose a microstructural strategy with dendritic nanopolar (DNP) regions self-assembled into an insulator, which simultaneously enhances breakdown strength and high-field polarizability and minimizes energy loss and thus markedly improves energy storage performance and stability. For illustration, in this study, we achieved a high energy density of 215.8 joules per cubic centimeter with an efficiency of 80.7% at a high electric field of 7.4 megavolts per centimeter in a DNP structure–designed PbZr 0.53 Ti 0.47 O 3 -MgO film. The proposed strategy is generally applicable for development of high-performance dielectric microcapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI