已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CTA-based deep-learning integrated model for identifying irregular shape and aneurysm size of unruptured intracranial aneurysms

医学 动脉瘤 放射科 人工智能 计算机科学
作者
Ke Tian,Chang Zhao,Yi Yang,Peng Liu,Mahmud Mossa‐Basha,Michael R. Levitt,Di‐Hua Zhai,Danyang Liu,Zhengwei Li,Yan Liu,Jinhao Zhang,Chao Cao,Chengcheng Zhu,Peng Jiang,Qingyuan Liu,Hongwei He,Yuanqing Xia
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-022784
标识
DOI:10.1136/jnis-2024-022784
摘要

Artificial intelligence can help to identify irregular shapes and sizes, crucial for managing unruptured intracranial aneurysms (UIAs). However, existing artificial intelligence tools lack reliable classification of UIA shape irregularity and validation against gold-standard three-dimensional rotational angiography (3DRA). This study aimed to develop and validate a deep-learning model using computed tomography angiography (CTA) for classifying irregular shapes and measuring UIA size. CTA and 3DRA of UIA patients from a referral hospital were included as a derivation set, with images from multiple medical centers as an external test set. Senior investigators manually measured irregular shape and aneurysm size on 3DRA as the ground truth. Convolutional neural network (CNN) models were employed to develop the CTA-based model for irregular shape classification and size measurement. Model performance for UIA size and irregular shape classification was evaluated by intraclass correlation coefficient (ICC) and area under the curve (AUC), respectively. Junior clinicians' performance in irregular shape classification was compared before and after using the model. The derivation set included CTA images from 307 patients with 365 UIAs. The test set included 305 patients with 350 UIAs. The AUC for irregular shape classification of this model in the test set was 0.87, and the ICC of aneurysm size measurement was 0.92, compared with 3DRA. With the model's help, junior clinicians' performance for irregular shape classification was significantly improved (AUC 0.86 before vs 0.97 after, P<0.001). This study provided a deep-learning model based on CTA for irregular shape classification and size measurement of UIAs with high accuracy and external validity. The model can be used to improve reader performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满乐萱完成签到,获得积分10
1秒前
Theeminions发布了新的文献求助10
2秒前
英俊的铭应助老实的青梦采纳,获得10
2秒前
3秒前
叶夜南发布了新的文献求助10
7秒前
Rondab应助Aman采纳,获得10
7秒前
李田田发布了新的文献求助10
8秒前
xiangyuan完成签到,获得积分10
8秒前
9秒前
wab完成签到,获得积分0
9秒前
笑而不语完成签到 ,获得积分10
10秒前
xiangyuan发布了新的文献求助10
13秒前
叶夜南完成签到,获得积分10
14秒前
17秒前
cc完成签到 ,获得积分10
19秒前
20秒前
羊蛋儿发布了新的文献求助10
20秒前
23秒前
25秒前
sun发布了新的文献求助10
26秒前
优雅愚志完成签到,获得积分10
27秒前
赘婿应助羊蛋儿采纳,获得10
29秒前
jixuzhuixun发布了新的文献求助10
30秒前
31秒前
自然的鹭洋完成签到,获得积分10
32秒前
xx完成签到 ,获得积分10
33秒前
36秒前
小二郎应助x1nger采纳,获得10
38秒前
FashionBoy应助Ace采纳,获得10
39秒前
赘婿应助李田田采纳,获得10
39秒前
jixuzhuixun完成签到,获得积分10
39秒前
40秒前
自由的谷丝完成签到,获得积分10
41秒前
Ava应助会撒娇的如天采纳,获得10
41秒前
45秒前
45秒前
核桃发布了新的文献求助10
48秒前
50秒前
萌萌完成签到 ,获得积分10
50秒前
Ace发布了新的文献求助10
51秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994433
求助须知:如何正确求助?哪些是违规求助? 3534839
关于积分的说明 11266585
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749