CTA-based deep-learning integrated model for identifying irregular shape and aneurysm size of unruptured intracranial aneurysms

医学 动脉瘤 放射科 人工智能 计算机科学
作者
Ke Tian,Chang Zhao,Yi Yang,Peng Liu,Mahmud Mossa‐Basha,Michael R. Levitt,Di‐Hua Zhai,Danyang Liu,Zhengwei Li,Yan Liu,Jinhao Zhang,Chao Cao,Chengcheng Zhu,Peng Jiang,Qingyuan Liu,Hongwei He,Yuanqing Xia
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:18 (2): 540-546 被引量:1
标识
DOI:10.1136/jnis-2024-022784
摘要

Background Artificial intelligence can help to identify irregular shapes and sizes, crucial for managing unruptured intracranial aneurysms (UIAs). However, existing artificial intelligence tools lack reliable classification of UIA shape irregularity and validation against gold-standard three-dimensional rotational angiography (3DRA). This study aimed to develop and validate a deep-learning model using computed tomography angiography (CTA) for classifying irregular shapes and measuring UIA size. Methods CTA and 3DRA of UIA patients from a referral hospital were included as a derivation set, with images from multiple medical centers as an external test set. Senior investigators manually measured irregular shape and aneurysm size on 3DRA as the ground truth. Convolutional neural network (CNN) models were employed to develop the CTA-based model for irregular shape classification and size measurement. Model performance for UIA size and irregular shape classification was evaluated by intraclass correlation coefficient (ICC) and area under the curve (AUC), respectively. Junior clinicians’ performance in irregular shape classification was compared before and after using the model. Results The derivation set included CTA images from 307 patients with 365 UIAs. The test set included 305 patients with 350 UIAs. The AUC for irregular shape classification of this model in the test set was 0.87, and the ICC of aneurysm size measurement was 0.92, compared with 3DRA. With the model’s help, junior clinicians’ performance for irregular shape classification was significantly improved (AUC 0.86 before vs 0.97 after, P<0.001). Conclusion This study provided a deep-learning model based on CTA for irregular shape classification and size measurement of UIAs with high accuracy and external validity. The model can be used to improve reader performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxl发布了新的文献求助10
1秒前
桐桐应助zwxzwx采纳,获得10
1秒前
1秒前
852应助贴贴采纳,获得10
1秒前
1秒前
明亮凡梦完成签到,获得积分10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
今后应助帅气羊采纳,获得10
4秒前
漂亮板栗发布了新的文献求助10
4秒前
4秒前
orixero应助leo7采纳,获得10
4秒前
4秒前
5秒前
田様应助火星上香菇采纳,获得10
5秒前
6秒前
坑坑发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
猷鲛完成签到,获得积分10
7秒前
FashionBoy应助Wei采纳,获得10
7秒前
Dreamchaser发布了新的文献求助10
8秒前
上善若水完成签到,获得积分20
8秒前
诚心的初露完成签到,获得积分10
9秒前
11发布了新的文献求助10
9秒前
9秒前
十六完成签到,获得积分10
9秒前
WCM完成签到,获得积分10
9秒前
9秒前
啊啊啊发布了新的文献求助10
10秒前
10秒前
10秒前
Akali关注了科研通微信公众号
10秒前
11秒前
11秒前
lmr发布了新的文献求助10
11秒前
11秒前
是真的应助肖旻采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784847
求助须知:如何正确求助?哪些是违规求助? 5684004
关于积分的说明 15465575
捐赠科研通 4913804
什么是DOI,文献DOI怎么找? 2644941
邀请新用户注册赠送积分活动 1592845
关于科研通互助平台的介绍 1547234