CTA-based deep-learning integrated model for identifying irregular shape and aneurysm size of unruptured intracranial aneurysms

医学 动脉瘤 放射科 人工智能 计算机科学
作者
Ke Tian,Chang Zhao,Yi Yang,Peng Liu,Mahmud Mossa‐Basha,Michael R. Levitt,Di‐Hua Zhai,Danyang Liu,Zhengwei Li,Yan Liu,Jinhao Zhang,Chao Cao,Chengcheng Zhu,Peng Jiang,Qingyuan Liu,Hongwei He,Yuanqing Xia
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-022784
标识
DOI:10.1136/jnis-2024-022784
摘要

Artificial intelligence can help to identify irregular shapes and sizes, crucial for managing unruptured intracranial aneurysms (UIAs). However, existing artificial intelligence tools lack reliable classification of UIA shape irregularity and validation against gold-standard three-dimensional rotational angiography (3DRA). This study aimed to develop and validate a deep-learning model using computed tomography angiography (CTA) for classifying irregular shapes and measuring UIA size. CTA and 3DRA of UIA patients from a referral hospital were included as a derivation set, with images from multiple medical centers as an external test set. Senior investigators manually measured irregular shape and aneurysm size on 3DRA as the ground truth. Convolutional neural network (CNN) models were employed to develop the CTA-based model for irregular shape classification and size measurement. Model performance for UIA size and irregular shape classification was evaluated by intraclass correlation coefficient (ICC) and area under the curve (AUC), respectively. Junior clinicians' performance in irregular shape classification was compared before and after using the model. The derivation set included CTA images from 307 patients with 365 UIAs. The test set included 305 patients with 350 UIAs. The AUC for irregular shape classification of this model in the test set was 0.87, and the ICC of aneurysm size measurement was 0.92, compared with 3DRA. With the model's help, junior clinicians' performance for irregular shape classification was significantly improved (AUC 0.86 before vs 0.97 after, P<0.001). This study provided a deep-learning model based on CTA for irregular shape classification and size measurement of UIAs with high accuracy and external validity. The model can be used to improve reader performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助西子阳采纳,获得10
1秒前
李爱国应助Smiley采纳,获得10
1秒前
大模型应助ws采纳,获得10
1秒前
华仔应助Smiley采纳,获得10
1秒前
Hello应助Smiley采纳,获得10
1秒前
情怀应助坤坤蹦蹦跳跳采纳,获得20
1秒前
周涛发布了新的文献求助30
2秒前
2秒前
蓝天应助LYK2997499077采纳,获得10
3秒前
yingzaifeixiang完成签到 ,获得积分10
3秒前
weibo完成签到,获得积分10
3秒前
帆帆牛发布了新的文献求助200
4秒前
筑城院完成签到,获得积分10
7秒前
古德方完成签到,获得积分10
7秒前
7秒前
卢莹完成签到,获得积分10
8秒前
8秒前
邓灯灯发布了新的文献求助10
8秒前
难过的谷芹应助过冷风采纳,获得10
9秒前
10秒前
Jasper应助西子阳采纳,获得10
10秒前
蓝天应助稳重大山采纳,获得10
10秒前
云游归尘完成签到 ,获得积分10
12秒前
帆帆牛完成签到,获得积分10
12秒前
12秒前
阿峤发布了新的文献求助10
12秒前
Liuying2809发布了新的文献求助10
14秒前
科目三应助BBrian采纳,获得10
15秒前
善良的樱发布了新的文献求助10
16秒前
小乐发布了新的文献求助10
16秒前
17秒前
leeky完成签到,获得积分10
17秒前
19秒前
yb完成签到,获得积分10
19秒前
xiaole完成签到,获得积分10
19秒前
TEO应助Liu采纳,获得20
20秒前
梨炒栗子完成签到,获得积分10
20秒前
我爱科研科研也爱我完成签到,获得积分10
20秒前
Jasper应助西子阳采纳,获得10
21秒前
万物安生发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055