OHEH-RTDETR: An Improved RT-DETR Detection Model Based on Frequency Layered Processing and Advanced Feature Selection

特征选择 选择(遗传算法) 计算机科学 特征(语言学) 模式识别(心理学) 数据挖掘 人工智能 语言学 哲学
作者
Haochun Wang,Yungui Zhang,Weihang Wu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adc1f3
摘要

Abstract As a fundamental material in modern industry, steel finds extensive application across various sectors, including manufacturing, construction, and energy. Steel product surface defects exhibit characteristics like multiple types, scales, small targets, and minimal background differences. Small object defects are challenging to detect due to their small image resolution and sparse feature information. To enable accurate and fast detection of industrial defects, this paper proposes an improved Real-Time-Detection-Transformer (RT-DETR)-based defect detection method that integrates high and low-frequency information processing and efficient advanced-feature-based selection and fusion, aiming to enhance the effectiveness of detecting multi-scale small targets. By leveraging contextual information and attention mechanisms, the method employs orthogonal attention-based deep feature extraction and a high-low frequency layered processing framework to select and fuse advanced features. It enriches extracting and integrating relationships between high- and low-level defect features by identifying spatial pixel-level relationships. The proposed algorithm achieves a mean average precision (mAP) of 91.8% and a detection speed of 135.6 FPS, meeting the demands of real-time industrial detection and achieving a balance between detection accuracy and detection speed. Generalization experiments on the public NEU-DET and GC10-DET datasets indicate mAP50 improvements of 2.9% and 9.1%, respectively, and the enhanced algorithm boosts recall rates for most small defect types, especially with a 15.3% increase in the recall rate for irregular crack defect. These results demonstrate that OEHE-RTDETR holds promise for industrial real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官听白发布了新的文献求助20
1秒前
王婧萱萱萱完成签到 ,获得积分10
2秒前
2秒前
颖火虫发布了新的文献求助10
4秒前
简单的银耳汤完成签到,获得积分10
4秒前
欧阳尔云完成签到 ,获得积分20
6秒前
QMM完成签到 ,获得积分10
7秒前
7秒前
8秒前
卟噜完成签到,获得积分10
8秒前
8秒前
10秒前
FSF完成签到,获得积分10
11秒前
NexusExplorer应助wisher采纳,获得10
11秒前
wpie99发布了新的文献求助200
12秒前
北门书生发布了新的文献求助10
12秒前
13秒前
DL发布了新的文献求助10
14秒前
教生物的杨教授完成签到,获得积分10
14秒前
bkagyin应助zhongying采纳,获得10
15秒前
科研通AI5应助爱lx采纳,获得10
16秒前
CipherSage应助芒果豆豆采纳,获得10
18秒前
GQL完成签到 ,获得积分10
19秒前
崛起之邦完成签到,获得积分10
19秒前
西原的橙果完成签到,获得积分10
19秒前
顾矜应助hulala采纳,获得10
21秒前
21秒前
Owen应助xhuryts采纳,获得10
22秒前
23秒前
跳跃仙人掌应助欧阳尔云采纳,获得20
24秒前
25秒前
ding应助潇洒小松鼠采纳,获得10
26秒前
mystryjoker发布了新的文献求助10
27秒前
朴实流沙发布了新的文献求助10
27秒前
小鹿儿完成签到,获得积分10
29秒前
zhongying发布了新的文献求助10
30秒前
30秒前
易止关注了科研通微信公众号
31秒前
PCT完成签到,获得积分10
31秒前
HHTTWG发布了新的文献求助50
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735677
求助须知:如何正确求助?哪些是违规求助? 3279465
关于积分的说明 10015528
捐赠科研通 2996202
什么是DOI,文献DOI怎么找? 1643929
邀请新用户注册赠送积分活动 781579
科研通“疑难数据库(出版商)”最低求助积分说明 749423