催化作用
石墨烯
化学
薗头偶联反应
吸附
配体(生物化学)
苯乙炔
碳纳米管
化学工程
纳米技术
组合化学
作者
Alba M. Valbuena-Rus,Matteo Savastano,Paloma Arranz-Mascarós,Carla Bazzicalupi,María P. Clares,M. Luz Godino-Salido,M. Dolores Gutiérrez Valero,Mario Inclán,Antonio Bianchi,Enrique García-España,Rafael López-Garzón
标识
DOI:10.1021/acs.inorgchem.2c01559
摘要
Green catalysts with excellent performance in Cu-free Sonogashira coupling reactions can be prepared by the supramolecular decoration of graphene surfaces with Pd(II) complexes. Here we report the synthesis, characterization, and catalytic properties of new catalysts obtained by the surface decoration of multiwalled carbon nanotubes (MWCNTs), graphene (G), and graphene nanoplatelets (GNPTs) with Pd(II) complexes of tetraaza-macrocyclic ligands bearing one or two anchor functionalities. The decoration of these carbon surfaces takes place under environmentally friendly conditions (water, room temperature, aerobic) in two steps: (i) π–π stacking attachment of the ligand via electron-poor anchor group 6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxo-pyrimidine and (ii) Pd(II) coordination from PdCl42–. Ligands are more efficiently adsorbed on the flat surfaces of G and GNPTs than on the curved surfaces of MWCNTs. All catalysts work very efficiently under mild conditions (50 °C, aerobic, 7 h), giving a similar high yield (90% or greater) in the coupling of iodobenzene with phenylacetylene to form diphenylacetylene in one catalytic cycle, but catalysts based on G and GNPTs (especially on GNPTs) provide greater catalytic efficiency in reuse (four cycles). The study also revealed that the active centers of the ligand-Pd type decorating the support surfaces are much more efficient than the Pd(0) and PdCl42– centers sharing the same surfaces. All of the results allow a better understanding of the structural factors to be controlled in order to obtain an optimal efficiency from similar catalysts based on graphene supports.
科研通智能强力驱动
Strongly Powered by AbleSci AI