亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiobjective whale optimization algorithm‐based feature selection for intelligent systems

计算机科学 特征选择 算法 适应度函数 分类器(UML) 领域(数学) 特征(语言学) 人工智能 选择(遗传算法) 数据挖掘 机器学习 遗传算法 数学 语言学 哲学 纯数学
作者
Milad Riyahi,Marjan Kuchaki Rafsanjani,Brij B. Gupta,Wadee Alhalabi
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (11): 9037-9054 被引量:16
标识
DOI:10.1002/int.22979
摘要

With regard to large dimensions of contemporary data sets and restricted computational time of intelligent systems, reducing the dimensions of data sets is necessary. Feature selection is a practical way to remove a set of redundant, irrelevant, and noisy features. In this way, the speed of decision-making procedure will be increased while the accuracy of decisions will be retained. To this end, numerous attentions have been attracted to the topic and consequently, extensive range of methods has been proposed. Regarding the goals of the feature selection concept, the proposed algorithms in this field must be fast and accurate. Therefore, this paper proposes a light meanwhile accurate algorithm to fulfill the mentioned goals. The presented algorithm takes the speed advantage of Whale Optimization Algorithm (WOA) to propose a novel feature selection method for intelligent systems. Moreover, to reach the goal of accuracy, the proposed strategy considers three important fitness objectives, namely, the number of selected features, the accuracy of classification, and information gain. The proposed scheme considers an accurate multiobjective fitness function instead of manipulating the basic algorithm. The reason is that improving the basic algorithms, WOA in our case, may lead to loading more computational complexity. Also, to make the proposed algorithm as light as possible, this paper considers K-nearest neighbor algorithm as the main classifier. The proposed light feature selection algorithm is run on different data sets. Experimental results prove that this algorithm is able to reduce the number of features meanwhile it retains, and in some cases even increases, the accuracy of classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Captain发布了新的文献求助10
3秒前
B_lue完成签到 ,获得积分10
3秒前
Captain完成签到,获得积分10
9秒前
梅菜肉包子完成签到 ,获得积分20
10秒前
13秒前
zhang发布了新的文献求助10
18秒前
一粟完成签到 ,获得积分10
1分钟前
HY发布了新的文献求助20
1分钟前
1分钟前
面包战士发布了新的文献求助10
1分钟前
脑洞疼应助面包战士采纳,获得10
1分钟前
1分钟前
lmgj发布了新的文献求助10
1分钟前
李爱国应助zyw采纳,获得10
1分钟前
1分钟前
zyw发布了新的文献求助10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得30
1分钟前
称心的砖家完成签到,获得积分10
2分钟前
2分钟前
xinqing发布了新的文献求助10
2分钟前
2分钟前
丘比特应助zyw采纳,获得10
2分钟前
2分钟前
xinqing完成签到,获得积分20
2分钟前
2分钟前
英勇初曼发布了新的文献求助10
2分钟前
酷波er应助xinqing采纳,获得10
2分钟前
John完成签到,获得积分10
2分钟前
耶格尔完成签到 ,获得积分0
2分钟前
3分钟前
toto发布了新的文献求助10
3分钟前
toto完成签到,获得积分10
3分钟前
李健应助科研通管家采纳,获得10
3分钟前
4分钟前
宇宙无敌狂暴龙血战士完成签到,获得积分10
4分钟前
4分钟前
123发布了新的文献求助10
4分钟前
王一一完成签到 ,获得积分10
4分钟前
热心平萱发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875756
求助须知:如何正确求助?哪些是违规求助? 6520795
关于积分的说明 15677607
捐赠科研通 4993843
什么是DOI,文献DOI怎么找? 2691645
邀请新用户注册赠送积分活动 1633853
关于科研通互助平台的介绍 1591507