气凝胶
石墨烯
超材料
材料科学
变形(气象学)
纳米纤维
屈曲
纳米技术
压缩(物理)
复合材料
光电子学
作者
Mingmao Wu,Hongya Geng,Yajie Hu,Hongyun Ma,Ce Yang,Hongwu Chen,Yeye Wen,Huhu Cheng,Chun Li,Feng Liu,Lan Jiang,Liangti Qu
标识
DOI:10.1038/s41467-022-32200-8
摘要
Ultralight, ultrastrong, and supertough graphene aerogel metamaterials combining with multi-functionalities are promising for future military and domestic applications. However, the unsatisfactory mechanical performances and lack of the multiscale structural regulation still impede the development of graphene aerogels. Herein, we demonstrate a laser-engraving strategy toward graphene meta-aerogels (GmAs) with unusual characters. As the prerequisite, the nanofiber-reinforced networks convert the graphene walls' deformation from the microscopic buckling to the bulk deformation during the compression process, ensuring the highly elastic, robust, and stiff nature. Accordingly, laser-engraving enables arbitrary regulation on the macro-configurations of GmAs with rich geometries and appealing characteristics such as large stretchability of 5400% reversible elongation, ultralight specific weight as small as 0.1 mg cm-3, and ultrawide Poisson's ratio range from -0.95 to 1.64. Additionally, incorporating specific components into the pre-designed meta-structures could further achieve diversified functionalities.
科研通智能强力驱动
Strongly Powered by AbleSci AI