Detecting Communities from Heterogeneous Graphs

计算机科学 利用 嵌入 理论计算机科学 社会联系 图形 图嵌入 数据挖掘 人工智能 心理学 计算机安全 心理治疗师
作者
Linhao Luo,Yixiang Fang,Xin Cao,Xiaofeng Zhang,Wenjie Zhang
标识
DOI:10.1145/3459637.3482250
摘要

Community detection, aiming to group the graph nodes into clusters with dense inner-connection, is a fundamental graph mining task. Recently, it has been studied on the heterogeneous graph, which contains multiple types of nodes and edges, posing great challenges for modeling the high-order relationship between nodes. With the surge of graph embedding mechanism, it has also been adopted to community detection. A remarkable group of works use the meta-path to capture the high-order relationship between nodes and embed them into nodes' embedding to facilitate community detection. However, defining meaningful meta-paths requires much domain knowledge, which largely limits their applications, especially on schema-rich heterogeneous graphs like knowledge graphs. To alleviate this issue, in this paper, we propose to exploit the context path to capture the high-order relationship between nodes, and build a Context Path-based Graph Neural Network (CP-GNN) model. It recursively embeds the high-order relationship between nodes into the node embedding with attention mechanisms to discriminate the importance of different relationships. By maximizing the expectation of the co-occurrence of nodes connected by context paths, the model can learn the nodes' embeddings that both well preserve the high-order relationship between nodes and are helpful for community detection. Extensive experimental results on four real-world datasets show that CP-GNN outperforms the state-of-the-art community detection methods1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助轻松的贞采纳,获得10
刚刚
wz完成签到,获得积分10
1秒前
子川完成签到 ,获得积分10
1秒前
怕孤独的鹭洋完成签到,获得积分10
1秒前
2秒前
耍酷的夏云完成签到,获得积分10
2秒前
laodie发布了新的文献求助10
3秒前
3秒前
小达完成签到,获得积分10
3秒前
nenoaowu发布了新的文献求助10
3秒前
文章要有性价比完成签到,获得积分10
4秒前
俏皮半烟完成签到,获得积分10
4秒前
Aki发布了新的文献求助10
4秒前
111完成签到,获得积分10
6秒前
耗尽完成签到,获得积分10
6秒前
烂漫驳发布了新的文献求助10
8秒前
轻松的贞完成签到,获得积分10
9秒前
李健应助balzacsun采纳,获得10
10秒前
轻松的悟空完成签到 ,获得积分10
12秒前
susan完成签到,获得积分10
13秒前
0029完成签到,获得积分10
15秒前
Aki完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
18秒前
LXR完成签到,获得积分10
20秒前
thchiang发布了新的文献求助10
21秒前
李健应助北城采纳,获得10
21秒前
WDK发布了新的文献求助10
21秒前
22秒前
轻松的贞发布了新的文献求助10
22秒前
医学生Mavis完成签到,获得积分10
24秒前
nextconnie完成签到,获得积分10
24秒前
汉堡包应助yyj采纳,获得10
25秒前
zqh740发布了新的文献求助30
26秒前
27秒前
NexusExplorer应助pharmstudent采纳,获得10
28秒前
熊遇蜜完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824