ECM roles and biomechanics in cardiac tissue decellularization

去细胞化 细胞外基质 组织工程 生物医学工程 天然组织 再生(生物学) 化学 细胞生物学 医学 生物
作者
Kaitlin M. Whitehead,Hanifah K.L. Hendricks,Sirin N. Nazan Cakir,Lisandra E. de Castro Brás
出处
期刊:American Journal of Physiology-heart and Circulatory Physiology [American Physiological Society]
卷期号:323 (3): H585-H596 被引量:7
标识
DOI:10.1152/ajpheart.00372.2022
摘要

Natural biomaterials hold enormous potential for tissue regeneration. The rapid advance of several tissue-engineered biomaterials, such as natural and synthetic polymer-based scaffolds, has led to widespread application of these materials in the clinic and in research. However, biomaterials can have limited repair capacity; obstacles result from immunogenicity, difficulties in mimicking native microenvironments, and maintaining the mechanical and biochemical (i.e., biomechanical) properties of native organs/tissues. The emergence of decellularized extracellular matrix (ECM)-derived biomaterials provides an attractive solution to overcome these hurdles since decellularized ECM provides a nonimmune environment with native three-dimensional structures and bioactive components. More importantly, decellularized ECM can be generated from the tissue of interest, such as the heart, and keep its native macro- and microstructure and tissue-specific composition. These decellularized cardiac matrices/scaffolds can then be reseeded using cardiac cells, and the resulting recellularized construct is considered an ideal choice for regenerating functional organs/tissues. Nonetheless, the decellularization process must be optimized and depends on tissue type, age, and functional goal. Although most decellularization protocols significantly reduce immunogenicity and deliver a matrix that maintains the tissue macrostructure, suboptimal decellularization can change ECM composition and microstructure, which affects the biomechanical properties of the tissue and consequently changes cell-matrix interactions and organ function. Herein, we review methods of decellularization, with particular emphasis on cardiac tissue, and how they can affect the biomechanics of the tissue, which in turn determines success of reseeding and in vivo viability. Moreover, we review recent developments in decellularized ECM-derived cardiac biomaterials and discuss future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铃旅完成签到,获得积分10
3秒前
sun完成签到,获得积分10
5秒前
dh完成签到,获得积分10
6秒前
6秒前
ll完成签到,获得积分10
9秒前
10秒前
yefeng发布了新的文献求助10
12秒前
13秒前
jioujg发布了新的文献求助10
14秒前
hujialiang完成签到,获得积分10
14秒前
帕芙芙完成签到,获得积分10
15秒前
16秒前
Apollonia发布了新的文献求助20
16秒前
16秒前
vanshaw.vs发布了新的文献求助30
16秒前
邵燚铭完成签到 ,获得积分10
20秒前
22秒前
23秒前
yy发布了新的文献求助10
23秒前
加奶的咖啡完成签到,获得积分10
25秒前
冷静乌完成签到 ,获得积分20
26秒前
一片叶子发布了新的文献求助10
26秒前
27秒前
FashionBoy应助蚊香仔采纳,获得10
28秒前
gttlyb完成签到,获得积分10
30秒前
美味蟹黄堡完成签到,获得积分10
31秒前
31秒前
32秒前
Lucas应助研友_封道天采纳,获得10
32秒前
yy完成签到,获得积分10
33秒前
慕青应助黑釉龙鲤采纳,获得10
34秒前
z123123完成签到,获得积分10
35秒前
小羊爱吃蓝莓完成签到,获得积分10
35秒前
35秒前
lyx发布了新的文献求助10
36秒前
37秒前
欢呼的傲霜完成签到,获得积分10
38秒前
misha991应助tt825采纳,获得30
38秒前
拓跋凝海完成签到,获得积分10
39秒前
wow完成签到,获得积分10
40秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816464
关于积分的说明 7912816
捐赠科研通 2476057
什么是DOI,文献DOI怎么找? 1318641
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388