Cascade-SORT: A robust fruit counting approach using multiple features cascade matching

人工智能 马氏距离 计算机视觉 级联 目标检测 计算机科学 模式识别(心理学) 卡尔曼滤波器 数学 稳健性(进化) 工程类 化学工程 生物化学 基因 化学
作者
Leiying He,Fangdong Wu,Xiaoqiang Du,Guofeng Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:200: 107223-107223 被引量:27
标识
DOI:10.1016/j.compag.2022.107223
摘要

Estimation of fruit yield is of great importance to agricultural management and production decision-making. Fruit counting based on computer vision is faced with many challenges, particularly dense occlusion and difficult detection. To address the problems that exist in agricultural scenarios, we propose a fruit counting pipeline based on multiple features matching. Fruit counting is regarded as a multiple object tracking problem based on tracking-by-detection framework. The proposed method combines object detection with deep learning, Kalman filter, and cascade matching, which integrated motion and appearance features for frame-by-frame data association. Using the detection results of YOLO-v3, cascade matching is leveraged to associate detection bounding boxes with tracks. In cascade matching, the appearance features of fruit, Mahalanobis distance, and intersection over union metric were fused to match objects frame-by-frame. Mahalanobis distance is used to screen detection bounding boxes initially. Furthermore, the vector of locally aggregated descriptors image retrieval method is used to calculate the similarity of appearance between the two objects. In the final step of cascade matching, residual unmatched tracks and detection candidates are matched using intersection over union metric. Moreover, the Kalman filter is optimized for predicting the trajectories of undetectable objects to enhance the accuracy and robustness of fruit counting. In the experiments, the results of predicted fruit counting for camellia is 44 while the ground truth is 38 for a video. For apple counting, the total predicted number of fruits for three videos is 310 while the actual number is 292. And compared to the method of SORT, our method is better in counting accuracy, reduced the number of ID switches, and had more robustness when the detector performance degenerated. All the above mentioned metrics indicate that the proposed method is well performance in fruit counting regardless of whether the fruit is sparsely or densely grown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu完成签到,获得积分10
刚刚
butterflycat完成签到,获得积分10
刚刚
丘比特应助yyy采纳,获得10
刚刚
寻道图强应助MrZKK采纳,获得50
1秒前
1秒前
1秒前
小陈总完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
Ava应助果子采纳,获得10
2秒前
77发布了新的文献求助10
3秒前
优秀的夏之完成签到,获得积分10
4秒前
5秒前
许译匀发布了新的文献求助10
6秒前
zhanglinfeng发布了新的文献求助10
7秒前
8秒前
8秒前
蓝兰发布了新的文献求助10
8秒前
曲沉鱼发布了新的文献求助10
10秒前
10秒前
10秒前
orixero应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
拓扑超导相变完成签到 ,获得积分10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
蓝天应助科研通管家采纳,获得10
12秒前
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得30
12秒前
robert3324应助科研通管家采纳,获得10
12秒前
吼吼应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
nuaa_shy应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
Hello应助科研通管家采纳,获得10
12秒前
12秒前
蓝天应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721