Cascade-SORT: A robust fruit counting approach using multiple features cascade matching

人工智能 马氏距离 计算机视觉 级联 目标检测 计算机科学 模式识别(心理学) 卡尔曼滤波器 数学 色谱法 化学
作者
Leiying He,Fangdong Wu,Xiaoqiang Du,Shouxin Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:200: 107223-107223 被引量:17
标识
DOI:10.1016/j.compag.2022.107223
摘要

Estimation of fruit yield is of great importance to agricultural management and production decision-making. Fruit counting based on computer vision is faced with many challenges, particularly dense occlusion and difficult detection. To address the problems that exist in agricultural scenarios, we propose a fruit counting pipeline based on multiple features matching. Fruit counting is regarded as a multiple object tracking problem based on tracking-by-detection framework. The proposed method combines object detection with deep learning, Kalman filter, and cascade matching, which integrated motion and appearance features for frame-by-frame data association. Using the detection results of YOLO-v3, cascade matching is leveraged to associate detection bounding boxes with tracks. In cascade matching, the appearance features of fruit, Mahalanobis distance, and intersection over union metric were fused to match objects frame-by-frame. Mahalanobis distance is used to screen detection bounding boxes initially. Furthermore, the vector of locally aggregated descriptors image retrieval method is used to calculate the similarity of appearance between the two objects. In the final step of cascade matching, residual unmatched tracks and detection candidates are matched using intersection over union metric. Moreover, the Kalman filter is optimized for predicting the trajectories of undetectable objects to enhance the accuracy and robustness of fruit counting. In the experiments, the results of predicted fruit counting for camellia is 44 while the ground truth is 38 for a video. For apple counting, the total predicted number of fruits for three videos is 310 while the actual number is 292. And compared to the method of SORT, our method is better in counting accuracy, reduced the number of ID switches, and had more robustness when the detector performance degenerated. All the above mentioned metrics indicate that the proposed method is well performance in fruit counting regardless of whether the fruit is sparsely or densely grown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小宇发布了新的文献求助10
刚刚
斜杠武完成签到,获得积分20
刚刚
1秒前
伞兵龙发布了新的文献求助10
1秒前
RC_Wang应助科研小民工采纳,获得10
1秒前
sanben完成签到,获得积分10
1秒前
1秒前
_蝴蝶小姐完成签到,获得积分10
2秒前
诗轩发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
迟大猫应助乐乱采纳,获得10
4秒前
万能图书馆应助派大星采纳,获得10
5秒前
FashionBoy应助娜行采纳,获得10
6秒前
6秒前
传奇3应助后知后觉采纳,获得10
7秒前
7秒前
7秒前
科研通AI2S应助Chem is try采纳,获得10
7秒前
8秒前
a方舟发布了新的文献求助10
8秒前
寒冷书竹发布了新的文献求助10
8秒前
8秒前
hhh发布了新的文献求助10
8秒前
顾矜应助富婆嘉嘉子采纳,获得10
8秒前
8秒前
8秒前
9秒前
江风海韵完成签到,获得积分10
9秒前
火星上的从雪完成签到,获得积分10
9秒前
在水一方应助kai采纳,获得10
9秒前
打打应助留胡子的青柏采纳,获得10
10秒前
10秒前
zhanghw发布了新的文献求助10
10秒前
Frank完成签到,获得积分10
10秒前
桐桐应助小喵采纳,获得10
10秒前
香蕉觅云应助执笔客采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672