Direct Prediction Method for Semi-Rigid Behavior of K-Joint in Transmission Towers Based on Surrogate Model

接头(建筑物) 力矩(物理) 支持向量机 结构工程 旋转(数学) 有限元法 可靠性(半导体) 传输(电信) 计算机科学 数学 算法 工程类 人工智能 物理 电信 功率(物理) 经典力学 量子力学
作者
Tang Zhengqi,Zhengliang Li,Tao Wang
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (03)
标识
DOI:10.1142/s021945542350027x
摘要

The assembled tube-gusset K-joint by bolts is a commonly used connection form in steel tubular transmission towers. At present, main existing research or design codes for steel tubular transmission towers regard this K-joint as either rigid or pinned connections, which do not consider the semi-rigid behavior of K-joint. In this paper, the semi-rigid behavior of K-joint in steel tubular transmission towers is investigated and a direct prediction (DP) method is proposed to evaluate the semi-rigid behavior of K-joints based on the support vector regression (SVR) model, especially to predict the moment–rotation curve of semi-rigid K-joints. First, the establishment and validation of the finite element (FE) model of semi-rigid K-joints are conducted. Second, a dataset of 144 samples generated by the FE model is used to train and test the SVR model. Finally, the accuracy assessment of the proposed DP method and comparison with other existing methods, including the Kishi–Chen model, EC3 model and ANN-based two-step prediction method, are presented. The accuracy assessment shows that predicted values of the proposed DP method based on the SVR model exhibit good agreement with the numerical analysis values, which indicates the quite high accuracy of this method. Additionally, the comparison reveals that the proposed DP method based on the SVR model for predicting moment–rotation curves is rather more accurate than other aforementioned methods. Therefore, the proposed DP method based on the SVR model is of high reliability in predicting the semi-rigid behavior of K-joints in steel tubular transmission towers, which affords an alternative way for further engineering analysis and initial design purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z-先森完成签到,获得积分10
刚刚
13134发布了新的文献求助10
刚刚
不配.应助科研通管家采纳,获得20
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
HEIKU应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
rosalieshi应助科研通管家采纳,获得30
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
彳亍1117应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
不配.应助科研通管家采纳,获得20
2秒前
隐形铃铛发布了新的文献求助10
2秒前
东皇太一完成签到,获得积分10
2秒前
3秒前
qianzhihe完成签到,获得积分10
3秒前
我来了完成签到,获得积分10
3秒前
安静的迎荷完成签到,获得积分10
5秒前
害羞聋五发布了新的文献求助10
6秒前
小任吃不胖完成签到,获得积分10
6秒前
7秒前
肥羊七号发布了新的文献求助10
8秒前
钱财实景发布了新的文献求助50
8秒前
9秒前
9秒前
派大凯不是俺完成签到,获得积分10
10秒前
QXR完成签到,获得积分10
12秒前
misalia完成签到 ,获得积分10
12秒前
xixi发布了新的文献求助10
13秒前
13秒前
SciKid524完成签到 ,获得积分10
13秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790878
关于积分的说明 7796853
捐赠科研通 2447242
什么是DOI,文献DOI怎么找? 1301754
科研通“疑难数据库(出版商)”最低求助积分说明 626336
版权声明 601194