Direct Prediction Method for Semi-Rigid Behavior of K-Joint in Transmission Towers Based on Surrogate Model

接头(建筑物) 力矩(物理) 支持向量机 结构工程 旋转(数学) 有限元法 可靠性(半导体) 传输(电信) 计算机科学 数学 算法 工程类 人工智能 物理 量子力学 经典力学 电信 功率(物理)
作者
Tang Zhengqi,Zhengliang Li,Tao Wang
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (03)
标识
DOI:10.1142/s021945542350027x
摘要

The assembled tube-gusset K-joint by bolts is a commonly used connection form in steel tubular transmission towers. At present, main existing research or design codes for steel tubular transmission towers regard this K-joint as either rigid or pinned connections, which do not consider the semi-rigid behavior of K-joint. In this paper, the semi-rigid behavior of K-joint in steel tubular transmission towers is investigated and a direct prediction (DP) method is proposed to evaluate the semi-rigid behavior of K-joints based on the support vector regression (SVR) model, especially to predict the moment–rotation curve of semi-rigid K-joints. First, the establishment and validation of the finite element (FE) model of semi-rigid K-joints are conducted. Second, a dataset of 144 samples generated by the FE model is used to train and test the SVR model. Finally, the accuracy assessment of the proposed DP method and comparison with other existing methods, including the Kishi–Chen model, EC3 model and ANN-based two-step prediction method, are presented. The accuracy assessment shows that predicted values of the proposed DP method based on the SVR model exhibit good agreement with the numerical analysis values, which indicates the quite high accuracy of this method. Additionally, the comparison reveals that the proposed DP method based on the SVR model for predicting moment–rotation curves is rather more accurate than other aforementioned methods. Therefore, the proposed DP method based on the SVR model is of high reliability in predicting the semi-rigid behavior of K-joints in steel tubular transmission towers, which affords an alternative way for further engineering analysis and initial design purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助里昂采纳,获得30
刚刚
1秒前
枯草芽孢完成签到,获得积分10
1秒前
li完成签到,获得积分20
1秒前
赘婿应助Spike采纳,获得10
1秒前
饭饭大王完成签到,获得积分10
1秒前
SY发布了新的文献求助10
2秒前
2秒前
2秒前
诚心寄灵完成签到,获得积分10
3秒前
3秒前
Halari发布了新的文献求助10
3秒前
3秒前
zoe11完成签到,获得积分10
3秒前
3秒前
FlipFlops发布了新的文献求助10
4秒前
我的miemie发布了新的文献求助10
5秒前
小木完成签到 ,获得积分10
5秒前
逢投必中完成签到 ,获得积分10
5秒前
李爱国应助俭朴的雨安采纳,获得10
5秒前
quan完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
lj完成签到,获得积分10
7秒前
qdr关闭了qdr文献求助
7秒前
Hua发布了新的文献求助10
7秒前
7秒前
8秒前
超级翠应助天气晴朗采纳,获得10
8秒前
科研通AI6应助干净语兰采纳,获得10
8秒前
8秒前
9秒前
传奇3应助茹茹采纳,获得10
10秒前
10秒前
SY完成签到,获得积分10
10秒前
Tammy完成签到,获得积分10
11秒前
李白发布了新的文献求助10
11秒前
安安发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482