Direct Prediction Method for Semi-Rigid Behavior of K-Joint in Transmission Towers Based on Surrogate Model

接头(建筑物) 力矩(物理) 支持向量机 结构工程 旋转(数学) 有限元法 可靠性(半导体) 传输(电信) 计算机科学 数学 算法 工程类 人工智能 物理 量子力学 经典力学 电信 功率(物理)
作者
Tang Zhengqi,Zhengliang Li,Tao Wang
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (03)
标识
DOI:10.1142/s021945542350027x
摘要

The assembled tube-gusset K-joint by bolts is a commonly used connection form in steel tubular transmission towers. At present, main existing research or design codes for steel tubular transmission towers regard this K-joint as either rigid or pinned connections, which do not consider the semi-rigid behavior of K-joint. In this paper, the semi-rigid behavior of K-joint in steel tubular transmission towers is investigated and a direct prediction (DP) method is proposed to evaluate the semi-rigid behavior of K-joints based on the support vector regression (SVR) model, especially to predict the moment–rotation curve of semi-rigid K-joints. First, the establishment and validation of the finite element (FE) model of semi-rigid K-joints are conducted. Second, a dataset of 144 samples generated by the FE model is used to train and test the SVR model. Finally, the accuracy assessment of the proposed DP method and comparison with other existing methods, including the Kishi–Chen model, EC3 model and ANN-based two-step prediction method, are presented. The accuracy assessment shows that predicted values of the proposed DP method based on the SVR model exhibit good agreement with the numerical analysis values, which indicates the quite high accuracy of this method. Additionally, the comparison reveals that the proposed DP method based on the SVR model for predicting moment–rotation curves is rather more accurate than other aforementioned methods. Therefore, the proposed DP method based on the SVR model is of high reliability in predicting the semi-rigid behavior of K-joints in steel tubular transmission towers, which affords an alternative way for further engineering analysis and initial design purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
糊涂的汽车完成签到,获得积分10
1秒前
1秒前
愉快的花卷完成签到,获得积分10
1秒前
masro完成签到,获得积分10
2秒前
2秒前
3秒前
草帽发布了新的文献求助10
4秒前
4秒前
997发布了新的文献求助10
5秒前
机智的天蓉完成签到 ,获得积分10
5秒前
6秒前
小火花发布了新的文献求助60
6秒前
彭于晏应助Xl采纳,获得10
6秒前
李小莉0419完成签到 ,获得积分20
8秒前
8秒前
123发布了新的文献求助10
8秒前
9秒前
研友_Z7gV2Z应助qiii采纳,获得10
10秒前
赘婿应助黑化小狗采纳,获得10
10秒前
NexusExplorer应助草帽采纳,获得10
10秒前
星辰大海应助Mt采纳,获得10
12秒前
Lunjiang发布了新的文献求助10
12秒前
风清扬发布了新的文献求助10
12秒前
lucas发布了新的文献求助10
12秒前
321发布了新的文献求助10
13秒前
酷酷伟宸完成签到,获得积分10
13秒前
NexusExplorer应助123采纳,获得10
13秒前
14秒前
14秒前
顺利秋灵发布了新的文献求助10
14秒前
记得笑完成签到,获得积分10
15秒前
15秒前
finger完成签到,获得积分10
15秒前
XHM完成签到,获得积分10
16秒前
16秒前
qphys完成签到,获得积分0
16秒前
17秒前
17秒前
Owen应助李平采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277