Direct Prediction Method for Semi-Rigid Behavior of K-Joint in Transmission Towers Based on Surrogate Model

接头(建筑物) 力矩(物理) 支持向量机 结构工程 旋转(数学) 有限元法 可靠性(半导体) 传输(电信) 计算机科学 数学 算法 工程类 人工智能 物理 量子力学 经典力学 电信 功率(物理)
作者
Tang Zhengqi,Zhengliang Li,Tao Wang
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (03)
标识
DOI:10.1142/s021945542350027x
摘要

The assembled tube-gusset K-joint by bolts is a commonly used connection form in steel tubular transmission towers. At present, main existing research or design codes for steel tubular transmission towers regard this K-joint as either rigid or pinned connections, which do not consider the semi-rigid behavior of K-joint. In this paper, the semi-rigid behavior of K-joint in steel tubular transmission towers is investigated and a direct prediction (DP) method is proposed to evaluate the semi-rigid behavior of K-joints based on the support vector regression (SVR) model, especially to predict the moment–rotation curve of semi-rigid K-joints. First, the establishment and validation of the finite element (FE) model of semi-rigid K-joints are conducted. Second, a dataset of 144 samples generated by the FE model is used to train and test the SVR model. Finally, the accuracy assessment of the proposed DP method and comparison with other existing methods, including the Kishi–Chen model, EC3 model and ANN-based two-step prediction method, are presented. The accuracy assessment shows that predicted values of the proposed DP method based on the SVR model exhibit good agreement with the numerical analysis values, which indicates the quite high accuracy of this method. Additionally, the comparison reveals that the proposed DP method based on the SVR model for predicting moment–rotation curves is rather more accurate than other aforementioned methods. Therefore, the proposed DP method based on the SVR model is of high reliability in predicting the semi-rigid behavior of K-joints in steel tubular transmission towers, which affords an alternative way for further engineering analysis and initial design purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leon发布了新的文献求助10
刚刚
大军门诊完成签到,获得积分10
刚刚
小葛完成签到,获得积分10
刚刚
刚刚
小马甲应助优美猕猴桃采纳,获得10
刚刚
1秒前
花灯王子发布了新的文献求助10
1秒前
吴帅完成签到,获得积分10
2秒前
华仔应助Te采纳,获得10
2秒前
2秒前
慕青应助海大彭于晏采纳,获得10
2秒前
11完成签到,获得积分10
2秒前
2秒前
辛勤面包发布了新的文献求助10
3秒前
但小安发布了新的文献求助10
3秒前
博ge完成签到 ,获得积分10
3秒前
4秒前
Tree完成签到 ,获得积分10
4秒前
SciGPT应助ZeSheng采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
Jinyang发布了新的文献求助10
4秒前
5秒前
5秒前
三白眼完成签到,获得积分10
5秒前
贵州医科大学完成签到,获得积分10
5秒前
7秒前
DreamSeker完成签到 ,获得积分10
7秒前
科研通AI6应助zhuzhu的江湖采纳,获得10
7秒前
star应助务实雪珍采纳,获得10
8秒前
8秒前
9秒前
思源应助SUNYAOSUNYAO采纳,获得10
9秒前
kook发布了新的文献求助10
9秒前
Criminology34应助惠香香的采纳,获得10
10秒前
sober给sober的求助进行了留言
10秒前
10秒前
FashionBoy应助杜禹锋采纳,获得10
10秒前
Leon完成签到,获得积分10
10秒前
路宇鹏完成签到,获得积分10
11秒前
森林发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836