Direct Prediction Method for Semi-Rigid Behavior of K-Joint in Transmission Towers Based on Surrogate Model

接头(建筑物) 力矩(物理) 支持向量机 结构工程 旋转(数学) 有限元法 可靠性(半导体) 传输(电信) 计算机科学 数学 算法 工程类 人工智能 物理 量子力学 经典力学 电信 功率(物理)
作者
Tang Zhengqi,Zhengliang Li,Tao Wang
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (03)
标识
DOI:10.1142/s021945542350027x
摘要

The assembled tube-gusset K-joint by bolts is a commonly used connection form in steel tubular transmission towers. At present, main existing research or design codes for steel tubular transmission towers regard this K-joint as either rigid or pinned connections, which do not consider the semi-rigid behavior of K-joint. In this paper, the semi-rigid behavior of K-joint in steel tubular transmission towers is investigated and a direct prediction (DP) method is proposed to evaluate the semi-rigid behavior of K-joints based on the support vector regression (SVR) model, especially to predict the moment–rotation curve of semi-rigid K-joints. First, the establishment and validation of the finite element (FE) model of semi-rigid K-joints are conducted. Second, a dataset of 144 samples generated by the FE model is used to train and test the SVR model. Finally, the accuracy assessment of the proposed DP method and comparison with other existing methods, including the Kishi–Chen model, EC3 model and ANN-based two-step prediction method, are presented. The accuracy assessment shows that predicted values of the proposed DP method based on the SVR model exhibit good agreement with the numerical analysis values, which indicates the quite high accuracy of this method. Additionally, the comparison reveals that the proposed DP method based on the SVR model for predicting moment–rotation curves is rather more accurate than other aforementioned methods. Therefore, the proposed DP method based on the SVR model is of high reliability in predicting the semi-rigid behavior of K-joints in steel tubular transmission towers, which affords an alternative way for further engineering analysis and initial design purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hr520824完成签到,获得积分10
1秒前
1秒前
1秒前
大个应助my196755采纳,获得10
1秒前
1秒前
beyond发布了新的文献求助10
1秒前
1秒前
弯弓丝的小张完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Orange应助Choco采纳,获得10
2秒前
wanci应助coffee采纳,获得10
3秒前
安hh完成签到,获得积分10
3秒前
慕青应助既温柔采纳,获得30
3秒前
3秒前
4秒前
丹丹子发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
小郭发布了新的文献求助10
5秒前
yuan发布了新的文献求助10
5秒前
小满应助aga采纳,获得10
5秒前
bkagyin应助猪猪空采纳,获得30
5秒前
6秒前
zkz发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
谦让友绿发布了新的文献求助10
7秒前
柚子发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
xm102322应助zz采纳,获得30
8秒前
rabbitsang发布了新的文献求助10
8秒前
Hustch完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398