炎症体
上睑下垂
神经退行性变
神经科学
炎症
神经炎症
神经病理学
中枢神经系统
生物
半胱氨酸蛋白酶1
疾病
医学
免疫学
病理
作者
Sara Jose,Natalie J. Groves,Kathrein E. Roper,Richard D. Gordon
标识
DOI:10.1016/j.biocel.2022.106273
摘要
Inflammasomes are multiprotein complexes that are mainly present in resident and infiltrating immune cells in the central nervous system. Inflammasomes function as intracellular sensors of immunometabolic stress, infection and changes in the local microenvironment. Inflammasome assembly in response to these ‘danger signals’, triggers recruitment and cluster-dependent activation of caspase-1 and the subsequent proteolytic activation of inflammatory cytokines such as interleukin-1β and interleukin-18. This is typically followed by a form of inflammatory cell death through pyroptosis. Since the discovery of inflammasomes in 2002, they have come to be recognized as central regulators of acute and chronic inflammation, a hallmark of progressive neurological diseases. Indeed, over the last decade, extensive inflammasome activation has been found at the sites of neuropathology in all progressive neurodegenerative diseases. Disease-specific misfolded protein aggregates which accumulate in neurodegenerative diseases, such as alpha synuclein or beta amyloid, have been found to be important triggers of NLRP3 inflammasome activation in the central nervous system. Together, these discoveries have transformed our understanding of how chronic inflammation is triggered and sustained in the central nervous system, and how it can contribute to neuronal death and disease progression in age-related neurodegenerative diseases. Therapeutic strategies around inhibition of NLRP3 activation in the central nervous system are already being evaluated to determine their effectiveness to slow progressive neurodegeneration. This review summarizes current understanding of inflammasomes in the most prevalent neurodegenerative diseases and discusses current knowledge gaps and inflammasome inhibition as a therapeutic strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI