An efficient model for copy-move image forgery detection

计算机科学 人工智能 水准点(测量) 特征(语言学) 匹配(统计) 模式识别(心理学) 集合(抽象数据类型) 泽尼克多项式 图像(数学) 聚类分析 特征提取 对象(语法) 目标检测 计算机视觉 数学 语言学 哲学 统计 物理 大地测量学 波前 光学 程序设计语言 地理
作者
Kha-Tu Huynh,Nga Ly-Tu,Thuong Le-Tien
出处
期刊:International Journal of Web Information Systems [Emerald Publishing Limited]
卷期号:18 (2/3): 181-195 被引量:4
标识
DOI:10.1108/ijwis-04-2022-0088
摘要

Purpose This study aims to solve problems of detecting copy-move images. With input images, the problem aims to: Confirm the original or forgery of the images, evaluate the performance of the detection and compare the proposed method’s effectiveness to the related ones. Design/methodology/approach This paper proposes an algorithm to identify copy-move images by matching the characteristics of objects in the same group. The method is carried out through two stages of grouping the objects and comparing objects’ features. The classification and clustering can improve processing time by skipping groups of only one object, and feature comparison on objects in the same group improves accuracy of the detection. YOLO5, the latest version of you only look once (YOLO) developed by Ultralytics LLC, and K-means are applied to classify and group the objects in the first stage. Then, modified Zernike moments (MZMs) and correlation coefficients are used for the features extraction and matching in the second stage. The Open Images V6 data set is used to train the YOLO5 model. The combination of YOLO5 and MZM makes the effectiveness of the proposed method for copy-move image detection with an average accuracy of 94.26% for images of benchmark and MICC-F600 and 95.37% for natural images. The outstanding feature of the method is that it can balance both processing time and accuracy in detecting duplicate regions on the image. Findings The problem is then solved by doing the following steps: Build a method to detect objects and compare their features to find the similarity if they are copy-move objects; use YOLO5 for the object detection and group the same category objects; ignore the group having only one object and extract the features of the other groups by MZMs; detect copy-move regions using K-means clustering; and calculate and compare the detection accuracy of the proposed method and related methods. Originality/value The main contributions of this paper include: Reduce the processing time by using YOLO5 in objects detection and K-means in clustering; improve the accuracy by using MZM to extract features and correlation coefficients to matching them; and implement and prove the effectiveness of the proposed method for three copy-move data sets: benchmark, MICC-F600 and author-built images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是述不是沭完成签到,获得积分10
刚刚
1111发布了新的文献求助10
刚刚
自由若剑完成签到,获得积分10
刚刚
刚刚
MG完成签到,获得积分10
刚刚
树叶有专攻完成签到,获得积分10
刚刚
刚刚
1秒前
able发布了新的文献求助10
1秒前
Ashley完成签到,获得积分10
1秒前
2秒前
3秒前
eternity136完成签到,获得积分10
3秒前
3秒前
Hello应助榴榴采纳,获得20
3秒前
杨振发布了新的文献求助10
4秒前
杰杰发布了新的文献求助10
4秒前
落叶完成签到 ,获得积分10
4秒前
5秒前
5秒前
天天下文献完成签到 ,获得积分10
5秒前
5秒前
酷炫翠桃应助卫海亦采纳,获得10
5秒前
5秒前
一锅炖不下完成签到 ,获得积分10
5秒前
eternity136发布了新的文献求助10
6秒前
Ava应助叶叶采纳,获得10
6秒前
rookieLi完成签到,获得积分10
7秒前
肖原完成签到,获得积分10
7秒前
若什么至发布了新的文献求助10
8秒前
田轲发布了新的文献求助10
8秒前
8秒前
hirono完成签到 ,获得积分10
8秒前
111发布了新的文献求助10
9秒前
爱因斯宣发布了新的文献求助10
9秒前
慕青应助杜七七采纳,获得10
9秒前
9秒前
殷勤的觅松完成签到,获得积分10
10秒前
小蘑菇应助zz采纳,获得10
10秒前
科研通AI5应助冬瓜熊采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582