亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient model for copy-move image forgery detection

计算机科学 人工智能 水准点(测量) 特征(语言学) 匹配(统计) 模式识别(心理学) 集合(抽象数据类型) 泽尼克多项式 图像(数学) 聚类分析 特征提取 对象(语法) 目标检测 计算机视觉 数学 哲学 物理 波前 光学 统计 程序设计语言 地理 语言学 大地测量学
作者
Kha-Tu Huynh,Nga Ly-Tu,Thuong Le-Tien
出处
期刊:International Journal of Web Information Systems [Emerald (MCB UP)]
卷期号:18 (2/3): 181-195 被引量:4
标识
DOI:10.1108/ijwis-04-2022-0088
摘要

Purpose This study aims to solve problems of detecting copy-move images. With input images, the problem aims to: Confirm the original or forgery of the images, evaluate the performance of the detection and compare the proposed method’s effectiveness to the related ones. Design/methodology/approach This paper proposes an algorithm to identify copy-move images by matching the characteristics of objects in the same group. The method is carried out through two stages of grouping the objects and comparing objects’ features. The classification and clustering can improve processing time by skipping groups of only one object, and feature comparison on objects in the same group improves accuracy of the detection. YOLO5, the latest version of you only look once (YOLO) developed by Ultralytics LLC, and K-means are applied to classify and group the objects in the first stage. Then, modified Zernike moments (MZMs) and correlation coefficients are used for the features extraction and matching in the second stage. The Open Images V6 data set is used to train the YOLO5 model. The combination of YOLO5 and MZM makes the effectiveness of the proposed method for copy-move image detection with an average accuracy of 94.26% for images of benchmark and MICC-F600 and 95.37% for natural images. The outstanding feature of the method is that it can balance both processing time and accuracy in detecting duplicate regions on the image. Findings The problem is then solved by doing the following steps: Build a method to detect objects and compare their features to find the similarity if they are copy-move objects; use YOLO5 for the object detection and group the same category objects; ignore the group having only one object and extract the features of the other groups by MZMs; detect copy-move regions using K-means clustering; and calculate and compare the detection accuracy of the proposed method and related methods. Originality/value The main contributions of this paper include: Reduce the processing time by using YOLO5 in objects detection and K-means in clustering; improve the accuracy by using MZM to extract features and correlation coefficients to matching them; and implement and prove the effectiveness of the proposed method for three copy-move data sets: benchmark, MICC-F600 and author-built images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊实打实的完成签到,获得积分10
1秒前
善良的灵羊完成签到 ,获得积分10
2秒前
宝贝丫头完成签到 ,获得积分10
3秒前
Anna完成签到 ,获得积分10
8秒前
daomaihu完成签到,获得积分10
9秒前
Xiaoxiao完成签到,获得积分20
11秒前
今后应助不喜采纳,获得10
14秒前
酷波er应助向7看齐采纳,获得10
15秒前
Potato发布了新的文献求助10
16秒前
Xiaoxiao发布了新的文献求助30
16秒前
希望天下0贩的0应助Lasse采纳,获得10
17秒前
小二郎应助Sariel采纳,获得10
18秒前
所所应助星空剪影采纳,获得10
19秒前
20秒前
亦hcy发布了新的文献求助10
21秒前
共享精神应助林钰浩采纳,获得10
21秒前
Potato完成签到,获得积分10
24秒前
科研通AI6应助谢琳采纳,获得10
26秒前
不喜发布了新的文献求助10
27秒前
29秒前
32秒前
张明完成签到 ,获得积分10
32秒前
ao完成签到,获得积分10
34秒前
34秒前
ajinjin完成签到,获得积分10
34秒前
34秒前
娇气的幼南完成签到 ,获得积分10
34秒前
34秒前
爆米花应助杜飞采纳,获得10
34秒前
谢琳完成签到,获得积分10
35秒前
林钰浩发布了新的文献求助10
37秒前
Hello应助bunny采纳,获得10
40秒前
41秒前
夹心饼干完成签到,获得积分10
42秒前
42秒前
林钰浩完成签到,获得积分10
42秒前
He关注了科研通微信公众号
43秒前
英姑应助小猫咪采纳,获得10
44秒前
小二郎应助科研通管家采纳,获得10
48秒前
思源应助科研通管家采纳,获得10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356411
求助须知:如何正确求助?哪些是违规求助? 4488209
关于积分的说明 13971794
捐赠科研通 4389030
什么是DOI,文献DOI怎么找? 2411357
邀请新用户注册赠送积分活动 1403907
关于科研通互助平台的介绍 1377771