An efficient model for copy-move image forgery detection

计算机科学 人工智能 水准点(测量) 特征(语言学) 匹配(统计) 模式识别(心理学) 集合(抽象数据类型) 泽尼克多项式 图像(数学) 聚类分析 特征提取 对象(语法) 目标检测 计算机视觉 数学 语言学 哲学 统计 物理 大地测量学 波前 光学 程序设计语言 地理
作者
Kha-Tu Huynh,Nga Ly-Tu,Thuong Le-Tien
出处
期刊:International Journal of Web Information Systems [Emerald (MCB UP)]
卷期号:18 (2/3): 181-195 被引量:4
标识
DOI:10.1108/ijwis-04-2022-0088
摘要

Purpose This study aims to solve problems of detecting copy-move images. With input images, the problem aims to: Confirm the original or forgery of the images, evaluate the performance of the detection and compare the proposed method’s effectiveness to the related ones. Design/methodology/approach This paper proposes an algorithm to identify copy-move images by matching the characteristics of objects in the same group. The method is carried out through two stages of grouping the objects and comparing objects’ features. The classification and clustering can improve processing time by skipping groups of only one object, and feature comparison on objects in the same group improves accuracy of the detection. YOLO5, the latest version of you only look once (YOLO) developed by Ultralytics LLC, and K-means are applied to classify and group the objects in the first stage. Then, modified Zernike moments (MZMs) and correlation coefficients are used for the features extraction and matching in the second stage. The Open Images V6 data set is used to train the YOLO5 model. The combination of YOLO5 and MZM makes the effectiveness of the proposed method for copy-move image detection with an average accuracy of 94.26% for images of benchmark and MICC-F600 and 95.37% for natural images. The outstanding feature of the method is that it can balance both processing time and accuracy in detecting duplicate regions on the image. Findings The problem is then solved by doing the following steps: Build a method to detect objects and compare their features to find the similarity if they are copy-move objects; use YOLO5 for the object detection and group the same category objects; ignore the group having only one object and extract the features of the other groups by MZMs; detect copy-move regions using K-means clustering; and calculate and compare the detection accuracy of the proposed method and related methods. Originality/value The main contributions of this paper include: Reduce the processing time by using YOLO5 in objects detection and K-means in clustering; improve the accuracy by using MZM to extract features and correlation coefficients to matching them; and implement and prove the effectiveness of the proposed method for three copy-move data sets: benchmark, MICC-F600 and author-built images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青木yi发布了新的文献求助10
1秒前
爆米花应助卿xx采纳,获得10
3秒前
英姑应助afengya采纳,获得10
3秒前
01231009yrjz完成签到,获得积分10
4秒前
认真的一刀完成签到 ,获得积分10
4秒前
刻苦傲安完成签到,获得积分10
5秒前
5秒前
IBMffff应助Soleil采纳,获得10
5秒前
6秒前
脑洞疼应助soar采纳,获得10
6秒前
爆米花应助LV采纳,获得10
7秒前
8R60d8应助辰星采纳,获得10
8秒前
9秒前
10秒前
小苦瓜完成签到,获得积分20
12秒前
冷傲书萱应助lu采纳,获得10
14秒前
洒水水发布了新的文献求助10
14秒前
sandra发布了新的文献求助10
16秒前
Jennie完成签到 ,获得积分10
16秒前
科研通AI2S应助Xu采纳,获得10
17秒前
18秒前
21秒前
22秒前
虚影完成签到 ,获得积分10
22秒前
小瓢虫完成签到 ,获得积分10
23秒前
24秒前
24秒前
24秒前
田様应助sandra采纳,获得10
27秒前
酷炫怀莲完成签到,获得积分10
27秒前
sunshitao发布了新的文献求助30
27秒前
28秒前
29秒前
QZ完成签到,获得积分10
29秒前
xun发布了新的文献求助10
29秒前
科研通AI2S应助hushan53采纳,获得10
30秒前
小白发布了新的文献求助10
30秒前
cyz012568完成签到,获得积分10
30秒前
31秒前
LV发布了新的文献求助10
32秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141883
求助须知:如何正确求助?哪些是违规求助? 2792846
关于积分的说明 7804392
捐赠科研通 2449137
什么是DOI,文献DOI怎么找? 1303086
科研通“疑难数据库(出版商)”最低求助积分说明 626769
版权声明 601265