Testing latent class of subjects with structural zeros in negative binomial models with applications to gut microbiome data

负二项分布 计数数据 过度分散 准似然 二项检验 统计 瓦尔德试验 似然比检验 数学 计量经济学 计算机科学 统计假设检验 泊松分布
作者
Peng Ye,Xinhui Qiao,Wan Tang,Chunyi Wang,Hua He
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:31 (11): 2237-2254 被引量:1
标识
DOI:10.1177/09622802221115881
摘要

Human microbiome research has become a hot-spot in health and medical research in the past decade due to the rapid development of modern high-throughput. Typical data in a microbiome study consisting of the operational taxonomic unit counts may have over-dispersion and/or structural zero issues. In such cases, negative binomial models can be applied to address the over-dispersion issue, while zero-inflated negative binomial models can be applied to address both issues. In practice, it is essential to know if there is zero-inflation in the data before applying negative binomial or zero-inflated negative binomial models because zero-inflated negative binomial models may be unnecessarily complex and difficult to interpret, or may even suffer from convergence issues if there is no zero-inflation in the data. On the other hand, negative binomial models may yield invalid inferences if the data does exhibit excessive zeros. In this paper, we develop a new test for detecting zero-inflation resulting from a latent class of subjects with structural zeros in a negative binomial regression model by directly comparing the amount of observed zeros with what would be expected under the negative binomial regression model. A closed form of the test statistic as well as its asymptotic properties are derived based on estimating equations. Intensive simulation studies are conducted to investigate the performance of the new test and compare it with the classical Wald, likelihood ratio, and score tests. The tests are also applied to human gut microbiome data to test latent class in microbial genera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾曾完成签到,获得积分10
刚刚
721完成签到,获得积分10
1秒前
糟糕的雪糕完成签到,获得积分10
1秒前
谁能拒绝周杰伦呢完成签到,获得积分10
1秒前
MM完成签到,获得积分10
1秒前
千幻完成签到,获得积分10
1秒前
1秒前
完美世界应助娜行采纳,获得10
2秒前
Again完成签到,获得积分10
2秒前
科研小菜鸟完成签到,获得积分20
2秒前
胡枝子完成签到,获得积分10
3秒前
苹果从菡完成签到,获得积分10
3秒前
ooseabiscuit完成签到,获得积分10
3秒前
3秒前
淡淡的雪发布了新的文献求助10
3秒前
不打扰完成签到 ,获得积分10
4秒前
千幻发布了新的文献求助10
4秒前
crr发布了新的文献求助10
4秒前
4秒前
5秒前
jklwss完成签到,获得积分10
5秒前
sa完成签到,获得积分10
5秒前
5秒前
万能图书馆应助成就莞采纳,获得30
5秒前
哇哈哈完成签到,获得积分10
6秒前
阔达的惠完成签到,获得积分10
6秒前
liang19640908完成签到 ,获得积分10
6秒前
季悦发布了新的文献求助10
6秒前
咸蛋黄巧克力完成签到,获得积分10
6秒前
6秒前
李唯佳完成签到 ,获得积分10
7秒前
zyt完成签到,获得积分10
7秒前
adasdad完成签到 ,获得积分10
7秒前
8秒前
嘿嘿完成签到 ,获得积分10
8秒前
8秒前
9秒前
tanmeng77发布了新的文献求助10
9秒前
10秒前
艺玲完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672