Testing latent class of subjects with structural zeros in negative binomial models with applications to gut microbiome data

负二项分布 计数数据 过度分散 准似然 二项检验 统计 瓦尔德试验 似然比检验 数学 计量经济学 计算机科学 统计假设检验 泊松分布
作者
Peng Ye,Xinhui Qiao,Wan Tang,Chunyi Wang,Hua He
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:31 (11): 2237-2254 被引量:1
标识
DOI:10.1177/09622802221115881
摘要

Human microbiome research has become a hot-spot in health and medical research in the past decade due to the rapid development of modern high-throughput. Typical data in a microbiome study consisting of the operational taxonomic unit counts may have over-dispersion and/or structural zero issues. In such cases, negative binomial models can be applied to address the over-dispersion issue, while zero-inflated negative binomial models can be applied to address both issues. In practice, it is essential to know if there is zero-inflation in the data before applying negative binomial or zero-inflated negative binomial models because zero-inflated negative binomial models may be unnecessarily complex and difficult to interpret, or may even suffer from convergence issues if there is no zero-inflation in the data. On the other hand, negative binomial models may yield invalid inferences if the data does exhibit excessive zeros. In this paper, we develop a new test for detecting zero-inflation resulting from a latent class of subjects with structural zeros in a negative binomial regression model by directly comparing the amount of observed zeros with what would be expected under the negative binomial regression model. A closed form of the test statistic as well as its asymptotic properties are derived based on estimating equations. Intensive simulation studies are conducted to investigate the performance of the new test and compare it with the classical Wald, likelihood ratio, and score tests. The tests are also applied to human gut microbiome data to test latent class in microbial genera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
武淑晴发布了新的文献求助10
1秒前
在水一方应助刘小蕊采纳,获得10
1秒前
BareBear应助顺利的雪莲采纳,获得10
1秒前
张哈哈发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
4秒前
lucas发布了新的文献求助10
4秒前
素雅发布了新的文献求助10
4秒前
比比完成签到,获得积分10
4秒前
Rheanna完成签到,获得积分10
4秒前
三水发布了新的文献求助10
5秒前
小二郎应助文静的柠檬采纳,获得10
5秒前
MASAMI完成签到,获得积分10
6秒前
null发布了新的文献求助10
6秒前
Aenuu完成签到,获得积分10
7秒前
8秒前
dan完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Owen应助昏睡的一一采纳,获得10
8秒前
8秒前
8秒前
8秒前
火星上凌雪完成签到 ,获得积分10
9秒前
qiuxu发布了新的文献求助10
9秒前
9秒前
9秒前
慕青应助柒tt采纳,获得10
10秒前
善学以致用应助鹿梦采纳,获得10
10秒前
落寞的沛春完成签到,获得积分10
10秒前
11秒前
didi完成签到,获得积分10
11秒前
三人行完成签到,获得积分10
11秒前
KeldonHuang完成签到,获得积分10
11秒前
11秒前
Morris完成签到,获得积分10
11秒前
11秒前
Dgr完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246