Leveraging big data of immune checkpoint blockade response identifies novel potential targets

免疫检查点 封锁 医学 转录组 基因签名 肿瘤科 生物标志物 基因表达谱 免疫系统 免疫疗法 计算生物学 癌症研究 内科学 基因 生物信息学 免疫学 基因表达 生物 遗传学 受体
作者
Yacine Barèche,Deirdre Kelly,Farnoosh Abbas‐Aghababazadeh,Masahiro Nakano,Parinaz Nasr Esfahani,Douglas Tkachuk,Helai P. Mohammad,Robert M. Samstein,Chung‐Han Lee,Luc G.T. Morris,Philippe L. Bédard,Benjamin Haibe‐Kains,John Stagg
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:33 (12): 1304-1317 被引量:49
标识
DOI:10.1016/j.annonc.2022.08.084
摘要

Background

The development of immune checkpoint blockade (ICB) has changed the way we treat various cancers. While ICB produces durable survival benefits in a number of malignancies, a large proportion of treated patients do not derive clinical benefit. Recent clinical profiling studies have shed light on molecular features and mechanisms that modulate response to ICB. Nevertheless, none of these identified molecular features were investigated in large enough cohorts to be of clinical value.

Materials and methods

Literature review was carried out to identify relevant studies including clinical dataset of patients treated with ICB [anti-programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1), anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) or the combination] and available sequencing data. Tumor mutational burden (TMB) and 37 previously reported gene expression (GE) signatures were computed with respect to the original publication. Biomarker association with ICB response (IR) and survival (progression-free survival/overall survival) was investigated separately within each study and combined together for meta-analysis.

Results

We carried out a comparative meta-analysis of genomic and transcriptomic biomarkers of IRs in over 3600 patients across 12 tumor types and implemented an open-source web application (predictIO.ca) for exploration. TMB and 21/37 gene signatures were predictive of IRs across tumor types. We next developed a de novo GE signature (PredictIO) from our pan-cancer analysis and demonstrated its superior predictive value over other biomarkers. To identify novel targets, we computed the T-cell dysfunction score for each gene within PredictIO and their ability to predict dual PD-1/CTLA-4 blockade in mice. Two genes, F2RL1 (encoding protease-activated receptor-2) and RBFOX2 (encoding RNA-binding motif protein 9), were concurrently associated with worse ICB clinical outcomes, T-cell dysfunction in ICB-naive patients and resistance to dual PD-1/CTLA-4 blockade in preclinical models.

Conclusion

Our study highlights the potential of large-scale meta-analyses in identifying novel biomarkers and potential therapeutic targets for cancer immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
5秒前
JJ发布了新的文献求助10
5秒前
王子安完成签到,获得积分10
6秒前
橙色小人发布了新的文献求助10
7秒前
cyan发布了新的文献求助30
9秒前
10秒前
天天快乐应助喜喵喵采纳,获得10
10秒前
shinysparrow应助dream采纳,获得200
10秒前
12秒前
KevenDing完成签到,获得积分10
14秒前
wulalala发布了新的文献求助30
15秒前
CipherSage应助loski采纳,获得10
15秒前
我是老大应助loski采纳,获得10
15秒前
完美世界应助loski采纳,获得10
16秒前
李健应助loski采纳,获得10
16秒前
欣喜沛芹发布了新的文献求助10
18秒前
可爱的函函应助橙色小人采纳,获得10
19秒前
ED应助多发论文采纳,获得10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
Owen应助机智思真采纳,获得10
22秒前
传奇3应助loski采纳,获得10
23秒前
万能图书馆应助自觉的凛采纳,获得10
25秒前
29秒前
积极幻桃应助ssjjzhou采纳,获得10
30秒前
讨厌科研完成签到,获得积分10
31秒前
34秒前
Xw发布了新的文献求助10
36秒前
37秒前
失眠的霸完成签到,获得积分10
38秒前
ChatGPT发布了新的文献求助10
39秒前
41秒前
多发论文完成签到,获得积分20
42秒前
42秒前
43秒前
su发布了新的文献求助10
43秒前
Xw关闭了Xw文献求助
43秒前
大个应助fjm采纳,获得10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173