Modelling and experimental study of thermo-physiological responses of human exercising in cold environments

服装 气流 均方误差 皮肤温度 环境科学 通风(建筑) 空气层 空气温度 自然通风 水分 模拟 气象学 大气科学 机械 材料科学 数学 热力学 图层(电子) 计算机科学 工程类 物理 统计 复合材料 生物医学工程 历史 考古
作者
Feiyu Chen,Ming Fu,Yayun Li,Shifei Shen,Xian Guo
出处
期刊:Journal of Thermal Biology [Elsevier]
卷期号:109: 103316-103316 被引量:6
标识
DOI:10.1016/j.jtherbio.2022.103316
摘要

A numerical human thermo-physiological model is developed with the consideration of characteristics of exercising people in cold environments. The developed model is characterized by: 1) the concept of net exercise efficiency which is used to correct the calculation of metabolic heat production by excluding mechanical energy; 2) the effects of low temperature on basal metabolic rate and basal blood flow rate; 3) the integration with a multi-layer clothing model to calculate the heat and moisture transfer through the clothing system, which takes into account the air gaps between the clothing layers to reflect the ventilation and air penetration effect from the ambient wind. Human subject experiment is conducted in a climate chamber to validate the proposed model. The human subject experiment is also carried out in a cold environment (-5 °C) combined with different air velocity conditions (still air, 2 m/s), taking into account the activities of different intensities (standing statically, 2 km/h walking and 7 km/h running). Thermo-physiological parameters including the core temperature, 8-point local skin temperatures and the clothing layer temperatures, are measured during the experiment. Comparison between the predicted and experimental results gives the root mean squared error (RMSE) of core temperature and mean skin temperature of 0.06-0.10 °C and 0.17-0.27 °C, respectively. RMSE values for local skin and clothing layer temperatures are no higher than 1.5 °C and most within 0.8 °C. The model is also validated with published data under various ambient temperature and activity intensity conditions. The proposed model is shown to be capable of predict the thermo-physiological responses of people exposed and exercising in cold environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
勤奋荔枝完成签到,获得积分10
3秒前
zouxu完成签到,获得积分10
3秒前
我是老大应助lxlcx采纳,获得10
4秒前
4秒前
4秒前
饭ff完成签到,获得积分10
5秒前
zhoujin发布了新的文献求助10
6秒前
研友_LXOWx8发布了新的文献求助10
7秒前
SH完成签到,获得积分20
7秒前
小辞芙芙发布了新的文献求助10
11秒前
12秒前
12秒前
11111完成签到,获得积分10
13秒前
CDN发布了新的文献求助10
15秒前
猜谜语完成签到,获得积分20
16秒前
天真的寒蕾完成签到,获得积分10
16秒前
16秒前
zhoujin完成签到,获得积分20
16秒前
soong发布了新的文献求助10
17秒前
WangBK完成签到,获得积分10
17秒前
tyy关注了科研通微信公众号
18秒前
18秒前
weijie完成签到,获得积分10
19秒前
搜集达人应助叶远望采纳,获得10
20秒前
green发布了新的文献求助10
20秒前
bill应助克林沙星采纳,获得10
22秒前
情怀应助丿小智灬采纳,获得10
22秒前
和平完成签到 ,获得积分10
23秒前
23秒前
24秒前
CDN完成签到,获得积分10
25秒前
所所应助WAY采纳,获得30
25秒前
今后应助green采纳,获得10
25秒前
刘欢发布了新的文献求助10
26秒前
lysun发布了新的文献求助10
28秒前
29秒前
29秒前
张切一发布了新的文献求助10
29秒前
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155997
求助须知:如何正确求助?哪些是违规求助? 2807353
关于积分的说明 7872795
捐赠科研通 2465725
什么是DOI,文献DOI怎么找? 1312328
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905