地质学
锆石
地球科学
俯冲
大陆地壳
结壳
沉积岩
风化作用
地球化学
大陆边缘
生物圈
大洋地壳
大陆弧
古生物学
构造学
生物
生态学
作者
Christopher J. Spencer,Neil S. Davies,Thomas M. Gernon,Xi Wang,William J. McMahon,Taylor Rae I. Morrell,Thea Hincks,Peir K. Pufahl,Alexander T. Brasier,Marina Seraine,Gui-Mei Lu
标识
DOI:10.1038/s41561-022-00995-2
摘要
The evolution of land plants during the Palaeozoic era transformed Earth’s biosphere. Because the Earth’s surface and interior are linked by tectonic processes, the linked evolution of the biosphere and sedimentary rocks should be recorded as a near-contemporary shift in the composition of the continental crust. To test this hypothesis, we assessed the isotopic signatures of zircon formed at subduction zones where marine sediments are transported into the mantle, thereby recording interactions between surface environments and the deep Earth. Using oxygen and lutetium–hafnium isotopes of magmatic zircon that respectively track surface weathering (time independent) and radiogenic decay (time dependent), we find a correlation in the composition of continental crust after 430 Myr ago, which is coeval with the onset of enhanced complexity and stability in sedimentary systems related to the evolution of vascular plants. The expansion of terrestrial vegetation brought channelled sand-bed and meandering rivers, muddy floodplains and thicker soils, lengthening the duration of weathering before final marine deposition. Collectively, our results suggest that the evolution of vascular plants coupled the degree of weathering and timescales of sediment routing to depositional basins where they were subsequently subducted and melted. The late Palaeozoic isotopic shift of zircon indicates that the greening of the continents was recorded in the deep Earth. Colonization of continents by plants some 430 Myr ago enhanced the complexity of weathering and sedimentary systems, and altered the composition of continental crust, according to statistical assessment of zircon compositions.
科研通智能强力驱动
Strongly Powered by AbleSci AI