亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services

强化学习 计算机科学 匹配(统计) 马尔可夫决策过程 服务(商务) 人气 订单(交换) 过程(计算) 马尔可夫过程 闲置 人工智能 运筹学 工程类 社会心理学 统计 数学 操作系统 经济 经济 心理学 财务
作者
Mingyue Xu,Peng Yue,Fan Yu,Can Yang,Mingda Zhang,Shangcheng Li,Hao Li
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:37 (2): 380-402 被引量:8
标识
DOI:10.1080/13658816.2022.2119477
摘要

The popularity of ride-hailing platforms has significantly improved travel efficiency by providing convenient and personalized transportation services. Designing an effective ride-hailing service generally needs to address two tasks: order matching that assigns orders to available vehicles and proactive vehicle repositioning that deploys idle vehicles to potentially high-demand regions. Recent studies have intensively utilized deep reinforcement learning to solve the two tasks by learning an optimal dispatching strategy. However, most of them generate actions for the two tasks independently, neglecting the interactions between the two tasks and the communications among multiple drivers. To this end, this paper provides an approach based on multi-agent deep reinforcement learning where the two tasks are modeled as a unified Markov decision process, and the colossal state space and competition among drivers are addressed. Additionally, a modifiable agent-specific state representation is proposed to facilitate knowledge transferring and improve computing efficiency. We evaluate our approach on a public taxi order dataset collected in Chengdu, China, where a variable number of simulated vehicles are tested. Experimental results show that our approach outperforms seven existing baselines, reducing passenger rejection rate, driver idle time and improving total driver income.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AliEmbark完成签到,获得积分10
5秒前
orion完成签到,获得积分20
11秒前
19秒前
27秒前
Criminology34应助科研通管家采纳,获得10
35秒前
Criminology34应助科研通管家采纳,获得10
35秒前
Criminology34应助科研通管家采纳,获得10
35秒前
Criminology34应助科研通管家采纳,获得10
36秒前
Criminology34应助科研通管家采纳,获得10
36秒前
paradox完成签到 ,获得积分10
47秒前
orion发布了新的文献求助10
1分钟前
青阳完成签到,获得积分10
1分钟前
1分钟前
MouLi完成签到,获得积分10
1分钟前
2分钟前
2分钟前
kukudou2完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
chuhaner完成签到,获得积分20
2分钟前
Nextf1sh发布了新的文献求助10
2分钟前
陶醉的难破完成签到,获得积分10
2分钟前
隐形曼青应助Nextf1sh采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
李爱国应助文章多多采纳,获得10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
1746435297发布了新的文献求助10
2分钟前
macleod发布了新的文献求助10
3分钟前
小灰灰完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639622
求助须知:如何正确求助?哪些是违规求助? 4749297
关于积分的说明 15006893
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563858
邀请新用户注册赠送积分活动 1522782
关于科研通互助平台的介绍 1482480