Examining semantic (dis)similarity in news through news organizations’ ideological similarity, similarity in truthfulness, and public engagement on social media: a network approach

新闻媒体 相似性(几何) 意识形态 社会化媒体 语义相似性 新闻价值 极化(电化学) 心理学 社会学 计算机科学 政治学 万维网 情报检索 媒体研究 人工智能 政治 法学 图像(数学) 化学 物理化学
作者
Yue Li,Robert M. Bond
出处
期刊:Human Communication Research [Oxford University Press]
卷期号:49 (1): 47-60 被引量:3
标识
DOI:10.1093/hcr/hqac020
摘要

Abstract The rise of homogenization and polarization in the news may inhibit individuals’ understanding of an issue and the functioning of a democratic society. This study applies a network approach to understanding patterns of semantic similarity and divergence across news coverage. Specifically, we focus on how (a) inter-organizational networks based on media ideology, (b) inter-organizational networks based on news truthfulness, and (c) public engagement that news articles received on social media may affect semantic similarity in the news. We use large-scale user logs data on social media platforms (i.e., Facebook and Twitter) and news text data from more than 100 news organizations over 10 months to examine the three potential processes. Our results show that the similarity between news organizations in terms of media ideology and news truthfulness is positively associated with semantic similarity, whereas the public engagement that news articles received on social media is negatively associated with semantic similarity. Our study contributes to theory development in mass communication by shifting to a network paradigm that connects news organizations, news content, and news audiences. We demonstrate how scholars across communication disciplines may collaborate to integrate distinct theories, connect multiple levels, and link otherwise separate dimensions. Methodologically, we demonstrate how synchronizing network science with natural language processing and combining social media log data with text data can help to answer research questions that communication scholars are interested in. The findings’ implications for news polarization are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahahaman发布了新的文献求助10
刚刚
老福贵儿应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
卢文强发布了新的文献求助10
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
慕青应助Zarc采纳,获得10
1秒前
2秒前
ADDDGDD发布了新的文献求助10
3秒前
NexusExplorer应助幽默的丹雪采纳,获得10
3秒前
啊懂发布了新的文献求助10
3秒前
3秒前
算命先生发布了新的文献求助10
3秒前
3秒前
小蘑菇应助AY采纳,获得10
3秒前
3秒前
温暖听安完成签到,获得积分10
4秒前
ashley发布了新的文献求助10
4秒前
Hello应助高亚楠采纳,获得10
4秒前
4秒前
安静柚子发布了新的文献求助10
4秒前
4秒前
复杂的语蕊完成签到,获得积分10
5秒前
Chy20031205完成签到,获得积分10
5秒前
5秒前
高高大有完成签到,获得积分20
5秒前
赵哼哼完成签到,获得积分20
6秒前
香蕉觅云应助rrrrrrrrrrrrrrr采纳,获得10
6秒前
6秒前
酷波er应助mo采纳,获得10
6秒前
wisdom应助子桑采纳,获得10
6秒前
俊逸的康乃馨完成签到 ,获得积分10
7秒前
科目三应助Rachel采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853