Examining semantic (dis)similarity in news through news organizations’ ideological similarity, similarity in truthfulness, and public engagement on social media: a network approach

新闻媒体 相似性(几何) 意识形态 社会化媒体 语义相似性 新闻价值 极化(电化学) 心理学 社会学 计算机科学 政治学 万维网 情报检索 媒体研究 人工智能 政治 法学 图像(数学) 化学 物理化学
作者
Yue Li,Robert M. Bond
出处
期刊:Human Communication Research [Oxford University Press]
卷期号:49 (1): 47-60 被引量:3
标识
DOI:10.1093/hcr/hqac020
摘要

Abstract The rise of homogenization and polarization in the news may inhibit individuals’ understanding of an issue and the functioning of a democratic society. This study applies a network approach to understanding patterns of semantic similarity and divergence across news coverage. Specifically, we focus on how (a) inter-organizational networks based on media ideology, (b) inter-organizational networks based on news truthfulness, and (c) public engagement that news articles received on social media may affect semantic similarity in the news. We use large-scale user logs data on social media platforms (i.e., Facebook and Twitter) and news text data from more than 100 news organizations over 10 months to examine the three potential processes. Our results show that the similarity between news organizations in terms of media ideology and news truthfulness is positively associated with semantic similarity, whereas the public engagement that news articles received on social media is negatively associated with semantic similarity. Our study contributes to theory development in mass communication by shifting to a network paradigm that connects news organizations, news content, and news audiences. We demonstrate how scholars across communication disciplines may collaborate to integrate distinct theories, connect multiple levels, and link otherwise separate dimensions. Methodologically, we demonstrate how synchronizing network science with natural language processing and combining social media log data with text data can help to answer research questions that communication scholars are interested in. The findings’ implications for news polarization are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助smin采纳,获得10
1秒前
baolong发布了新的文献求助10
1秒前
英俊的铭应助ZhaoCun采纳,获得10
1秒前
Jasper应助ZhaoCun采纳,获得10
1秒前
bkagyin应助ZhaoCun采纳,获得10
1秒前
科目三应助ZhaoCun采纳,获得10
1秒前
一地狗粮完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
dd完成签到,获得积分10
3秒前
情怀应助学术小子采纳,获得10
4秒前
妙木仙发布了新的文献求助10
4秒前
4秒前
里予完成签到,获得积分10
4秒前
4秒前
5秒前
lve发布了新的文献求助10
5秒前
健忘之卉完成签到,获得积分10
5秒前
可爱的函函应助努力学习采纳,获得10
5秒前
米特拉斯完成签到,获得积分10
5秒前
酷波er应助Little2采纳,获得10
5秒前
6秒前
肖琳发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
dd发布了新的文献求助10
8秒前
HHHH发布了新的文献求助10
8秒前
123zsy发布了新的文献求助10
8秒前
微笑远锋完成签到,获得积分10
8秒前
搜集达人应助阳阳采纳,获得10
8秒前
8秒前
我是老大应助小可采纳,获得10
8秒前
雪白的映易完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
椰子发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152