A ViT-AMC Network With Adaptive Model Fusion and Multiobjective Optimization for Interpretable Laryngeal Tumor Grading From Histopathological Images

计算机科学 人工智能 分级(工程) 自适应光学 模式识别(心理学) 图像融合 融合 图像(数学) 工程类 天文 语言学 物理 哲学 土木工程
作者
Pan Huang,Peng He,Sukun Tian,Mingrui Ma,Peng Feng,Hualiang Xiao,Francesco Mercaldo,Antonella Santone,Jing Qin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (1): 15-28 被引量:53
标识
DOI:10.1109/tmi.2022.3202248
摘要

The tumor grading of laryngeal cancer pathological images needs to be accurate and interpretable. The deep learning model based on the attention mechanism-integrated convolution (AMC) block has good inductive bias capability but poor interpretability, whereas the deep learning model based on the vision transformer (ViT) block has good interpretability but weak inductive bias ability. Therefore, we propose an end-to-end ViT-AMC network (ViT-AMCNet) with adaptive model fusion and multiobjective optimization that integrates and fuses the ViT and AMC blocks. However, existing model fusion methods often have negative fusion: 1). There is no guarantee that the ViT and AMC blocks will simultaneously have good feature representation capability. 2). The difference in feature representations learning between the ViT and AMC blocks is not obvious, so there is much redundant information in the two feature representations. Accordingly, we first prove the feasibility of fusing the ViT and AMC blocks based on Hoeffding's inequality. Then, we propose a multiobjective optimization method to solve the problem that ViT and AMC blocks cannot simultaneously have good feature representation. Finally, an adaptive model fusion method integrating the metrics block and the fusion block is proposed to increase the differences between feature representations and improve the deredundancy capability. Our methods improve the fusion ability of ViT-AMCNet, and experimental results demonstrate that ViT-AMCNet significantly outperforms state-of-the-art methods. Importantly, the visualized interpretive maps are closer to the region of interest of concern by pathologists, and the generalization ability is also excellent. Our code is publicly available at https://github.com/Baron-Huang/ViT-AMCNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱听歌雪旋完成签到,获得积分10
刚刚
Nichols完成签到,获得积分10
1秒前
mx应助北极星采纳,获得20
1秒前
爱科研的罗罗完成签到,获得积分10
2秒前
AGuang应助ED采纳,获得200
2秒前
豪士赋完成签到,获得积分10
3秒前
杨小黑发布了新的文献求助10
3秒前
法芙娜发布了新的文献求助10
3秒前
三七完成签到,获得积分10
5秒前
5秒前
judy891zhu完成签到,获得积分10
5秒前
6秒前
6秒前
自由正豪完成签到,获得积分10
6秒前
在水一方应助水中鱼采纳,获得10
6秒前
6秒前
脑洞疼应助欣慰宛菡采纳,获得10
7秒前
7秒前
小蘑菇应助xiaoshuai采纳,获得10
7秒前
Ava应助香云采纳,获得10
8秒前
丘比特应助Jane采纳,获得10
8秒前
搜集达人应助小于采纳,获得10
8秒前
beyondjun完成签到,获得积分10
8秒前
8秒前
8秒前
逆流的鱼完成签到 ,获得积分10
9秒前
乐正亦寒完成签到 ,获得积分10
9秒前
dong应助Ogai采纳,获得10
10秒前
Jasper应助市不辣采纳,获得10
10秒前
李健的小迷弟应助zmj采纳,获得10
10秒前
小先生发布了新的文献求助10
11秒前
晓晓完成签到,获得积分10
11秒前
Yuanyuan发布了新的文献求助10
11秒前
beyondjun发布了新的文献求助10
12秒前
YuHang发布了新的文献求助10
12秒前
牛奶发布了新的文献求助10
12秒前
13秒前
清明发布了新的文献求助10
13秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352