A ViT-AMC Network With Adaptive Model Fusion and Multiobjective Optimization for Interpretable Laryngeal Tumor Grading From Histopathological Images

可解释性 计算机科学 人工智能 特征(语言学) 特征学习 模式识别(心理学) 机器学习 语言学 哲学
作者
Pan Huang,Peng He,Sukun Tian,Mingrui Ma,Peng Feng,Hualiang Xiao,Francesco Mercaldo,Antonella Santone,Jing Qin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (1): 15-28 被引量:47
标识
DOI:10.1109/tmi.2022.3202248
摘要

The tumor grading of laryngeal cancer pathological images needs to be accurate and interpretable. The deep learning model based on the attention mechanism-integrated convolution (AMC) block has good inductive bias capability but poor interpretability, whereas the deep learning model based on the vision transformer (ViT) block has good interpretability but weak inductive bias ability. Therefore, we propose an end-to-end ViT-AMC network (ViT-AMCNet) with adaptive model fusion and multiobjective optimization that integrates and fuses the ViT and AMC blocks. However, existing model fusion methods often have negative fusion: 1). There is no guarantee that the ViT and AMC blocks will simultaneously have good feature representation capability. 2). The difference in feature representations learning between the ViT and AMC blocks is not obvious, so there is much redundant information in the two feature representations. Accordingly, we first prove the feasibility of fusing the ViT and AMC blocks based on Hoeffding's inequality. Then, we propose a multiobjective optimization method to solve the problem that ViT and AMC blocks cannot simultaneously have good feature representation. Finally, an adaptive model fusion method integrating the metrics block and the fusion block is proposed to increase the differences between feature representations and improve the deredundancy capability. Our methods improve the fusion ability of ViT-AMCNet, and experimental results demonstrate that ViT-AMCNet significantly outperforms state-of-the-art methods. Importantly, the visualized interpretive maps are closer to the region of interest of concern by pathologists, and the generalization ability is also excellent. Our code is publicly available at https://github.com/Baron-Huang/ViT-AMCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
小白学徒完成签到,获得积分10
4秒前
司徒文青应助机灵柚子采纳,获得30
5秒前
就是电话发布了新的文献求助10
5秒前
充电宝应助小生采纳,获得10
5秒前
虚拟莫茗发布了新的文献求助10
5秒前
sonny发布了新的文献求助10
6秒前
8秒前
11秒前
Miracle完成签到,获得积分10
11秒前
Jasper应助林声采纳,获得10
11秒前
烟花应助方明会采纳,获得10
12秒前
13秒前
minagao完成签到 ,获得积分10
13秒前
zmq完成签到,获得积分20
14秒前
zyy发布了新的文献求助10
17秒前
sonny完成签到,获得积分10
17秒前
18秒前
酷波er应助荼蘼如雪采纳,获得10
18秒前
why发布了新的文献求助10
22秒前
22秒前
赵文伟发布了新的文献求助10
23秒前
23秒前
牛牛不怕困难完成签到,获得积分10
25秒前
ai zs发布了新的文献求助10
26秒前
自然网络关注了科研通微信公众号
28秒前
花城诚成完成签到,获得积分10
29秒前
ZSZ完成签到,获得积分10
30秒前
zhaoyang完成签到 ,获得积分10
30秒前
curtain完成签到,获得积分10
31秒前
31秒前
zzw发布了新的文献求助10
31秒前
33秒前
phy完成签到,获得积分10
33秒前
口外彭于晏完成签到,获得积分10
33秒前
彪壮的小玉应助wub采纳,获得50
33秒前
36秒前
wood发布了新的文献求助10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145219
求助须知:如何正确求助?哪些是违规求助? 2796603
关于积分的说明 7820639
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305309
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464