A ViT-AMC Network With Adaptive Model Fusion and Multiobjective Optimization for Interpretable Laryngeal Tumor Grading From Histopathological Images

计算机科学 人工智能 分级(工程) 自适应光学 模式识别(心理学) 图像融合 融合 图像(数学) 工程类 天文 语言学 物理 哲学 土木工程
作者
Pan Huang,Peng He,Sukun Tian,Mingrui Ma,Peng Feng,Hualiang Xiao,Francesco Mercaldo,Antonella Santone,Jing Qin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (1): 15-28 被引量:53
标识
DOI:10.1109/tmi.2022.3202248
摘要

The tumor grading of laryngeal cancer pathological images needs to be accurate and interpretable. The deep learning model based on the attention mechanism-integrated convolution (AMC) block has good inductive bias capability but poor interpretability, whereas the deep learning model based on the vision transformer (ViT) block has good interpretability but weak inductive bias ability. Therefore, we propose an end-to-end ViT-AMC network (ViT-AMCNet) with adaptive model fusion and multiobjective optimization that integrates and fuses the ViT and AMC blocks. However, existing model fusion methods often have negative fusion: 1). There is no guarantee that the ViT and AMC blocks will simultaneously have good feature representation capability. 2). The difference in feature representations learning between the ViT and AMC blocks is not obvious, so there is much redundant information in the two feature representations. Accordingly, we first prove the feasibility of fusing the ViT and AMC blocks based on Hoeffding's inequality. Then, we propose a multiobjective optimization method to solve the problem that ViT and AMC blocks cannot simultaneously have good feature representation. Finally, an adaptive model fusion method integrating the metrics block and the fusion block is proposed to increase the differences between feature representations and improve the deredundancy capability. Our methods improve the fusion ability of ViT-AMCNet, and experimental results demonstrate that ViT-AMCNet significantly outperforms state-of-the-art methods. Importantly, the visualized interpretive maps are closer to the region of interest of concern by pathologists, and the generalization ability is also excellent. Our code is publicly available at https://github.com/Baron-Huang/ViT-AMCNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长隆完成签到 ,获得积分10
1秒前
1秒前
852应助YukiXu采纳,获得10
2秒前
2秒前
jijizz发布了新的文献求助10
2秒前
yyyyy发布了新的文献求助10
2秒前
zhappy发布了新的文献求助20
2秒前
3秒前
稳重的八宝粥完成签到 ,获得积分10
4秒前
4秒前
xx关闭了xx文献求助
4秒前
5秒前
7秒前
8秒前
su发布了新的文献求助10
8秒前
小马甲应助鳗鱼灵寒采纳,获得10
8秒前
calbee发布了新的文献求助10
9秒前
lalala发布了新的文献求助10
10秒前
10秒前
张辰12536完成签到,获得积分10
11秒前
12秒前
程琳发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
88完成签到,获得积分10
13秒前
我是站长才怪应助谭谨川采纳,获得10
13秒前
1233发布了新的文献求助10
14秒前
bismarck7完成签到,获得积分10
14秒前
14秒前
14秒前
田様应助淡淡采白采纳,获得10
14秒前
赖道之发布了新的文献求助10
15秒前
calbee完成签到,获得积分10
15秒前
15秒前
和谐白云完成签到,获得积分10
16秒前
16秒前
16秒前
王w发布了新的文献求助10
17秒前
yyyyy完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808