Object detection using YOLO: challenges, architectural successors, datasets and applications

计算机科学 探测器 目标检测 人工智能 推论 对象(语法) 分割 光学(聚焦) 阶段(地层学) 计算机视觉 深度学习 模式识别(心理学) 电信 光学 物理 古生物学 生物
作者
Tausif Diwan,G. Anirudh,Jitendra V. Tembhurne
出处
期刊:Multimedia Tools and Applications [Springer Science+Business Media]
卷期号:82 (6): 9243-9275 被引量:714
标识
DOI:10.1007/s11042-022-13644-y
摘要

Object detection is one of the predominant and challenging problems in computer vision. Over the decade, with the expeditious evolution of deep learning, researchers have extensively experimented and contributed in the performance enhancement of object detection and related tasks such as object classification, localization, and segmentation using underlying deep models. Broadly, object detectors are classified into two categories viz. two stage and single stage object detectors. Two stage detectors mainly focus on selective region proposals strategy via complex architecture; however, single stage detectors focus on all the spatial region proposals for the possible detection of objects via relatively simpler architecture in one shot. Performance of any object detector is evaluated through detection accuracy and inference time. Generally, the detection accuracy of two stage detectors outperforms single stage object detectors. However, the inference time of single stage detectors is better compared to its counterparts. Moreover, with the advent of YOLO (You Only Look Once) and its architectural successors, the detection accuracy is improving significantly and sometime it is better than two stage detectors. YOLOs are adopted in various applications majorly due to their faster inferences rather than considering detection accuracy. As an example, detection accuracies are 63.4 and 70 for YOLO and Fast-RCNN respectively, however, inference time is around 300 times faster in case of YOLO. In this paper, we present a comprehensive review of single stage object detectors specially YOLOs, regression formulation, their architecture advancements, and performance statistics. Moreover, we summarize the comparative illustration between two stage and single stage object detectors, among different versions of YOLOs, applications based on two stage detectors, and different versions of YOLOs along with the future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三国时代发布了新的文献求助10
2秒前
充电宝应助dyd采纳,获得30
2秒前
3秒前
3秒前
子不语完成签到,获得积分10
3秒前
危机的蜜蜂完成签到,获得积分10
4秒前
jellyfish发布了新的文献求助10
4秒前
LLoud完成签到,获得积分10
5秒前
5秒前
5秒前
聪慧咖啡豆完成签到,获得积分10
6秒前
xiaxia42完成签到 ,获得积分10
6秒前
四叶草完成签到,获得积分10
6秒前
纯真雁菱发布了新的文献求助10
6秒前
成美完成签到,获得积分10
7秒前
Bond完成签到,获得积分10
7秒前
纵马长歌完成签到,获得积分10
8秒前
lililiiii完成签到,获得积分10
8秒前
小羊闲庭信步完成签到,获得积分10
8秒前
Cactus发布了新的文献求助10
9秒前
天天快乐应助真德秀先生采纳,获得10
9秒前
寒雨发布了新的文献求助10
10秒前
佚名完成签到,获得积分10
10秒前
执着期待完成签到 ,获得积分10
10秒前
violet完成签到,获得积分10
11秒前
fanfan44390完成签到,获得积分10
12秒前
12秒前
Yuki完成签到,获得积分10
12秒前
西瓜橙子完成签到,获得积分10
13秒前
一一完成签到 ,获得积分10
13秒前
Ayan完成签到,获得积分10
14秒前
dyd发布了新的文献求助30
14秒前
送外卖了完成签到,获得积分10
14秒前
左一酱完成签到 ,获得积分10
14秒前
魏猛完成签到,获得积分10
15秒前
júpiter完成签到,获得积分10
15秒前
Ava应助三国时代采纳,获得10
16秒前
开放的沛文完成签到,获得积分20
16秒前
xiaoqi666完成签到 ,获得积分10
16秒前
粗犷的磬发布了新的文献求助10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767235
求助须知:如何正确求助?哪些是违规求助? 3311824
关于积分的说明 10160004
捐赠科研通 3027006
什么是DOI,文献DOI怎么找? 1661400
邀请新用户注册赠送积分活动 794018
科研通“疑难数据库(出版商)”最低求助积分说明 755955