靛蓝胭脂红
光催化
材料科学
光降解
纳米复合材料
石墨氮化碳
磷酸锆
化学工程
锆
X射线光电子能谱
打赌理论
无定形固体
比表面积
氮化碳
复合数
水溶液
核化学
磷酸盐
纳米技术
催化作用
复合材料
有机化学
化学
冶金
工程类
作者
Ayyob M. Bakry,Waleed M. Alamier,M. Samy El‐Shall,Fathi S. Awad
标识
DOI:10.1016/j.jmrt.2022.07.161
摘要
In this work, we reported the synthesis of amorphous zirconium phosphate graphitic carbon nitride (a-ZrP/g-C3N4) composite via the formation of amorphous zirconium phosphate (a-ZrP) onto the surface of graphitic carbon nitride (g-C3N4) nanosheets. The prepared a-ZrP-g-C3N4 composite was characterized by different analytical techniques. The FTIR, XRD, TEM, SEM, XPS, and PET surface area confirmed the successful preparation of a-ZrP-g-C3N4 nanocomposite with a high surface area (60 m2/g) and pore width less than 2 nm. The a-ZrP-g-C3N4 nanocomposite showed superior photocatalytic efficiency for the degradation of indigo carmine (IC) dye compared to the (g-C3N4) nanosheets. At room temperature and normal pH, 5 mg of the photocatalyst can degrade about 100% of 50 mL of an aqueous solution containing 10 ppm IC dye within 30 min under UV light irradiation (4 W at 356 nm). The photodegradation kinetics fitted well with the first-order kinetic module. The high photodegradation efficiency was attributed to the unique structure of the prepared nanocomposite since a-ZrP crosslinks g-C3N4 nanosheets in mesoporous structure which generate multichannel photocatalytic sites in addition to the inhibition of photogenerated electrons (e–) and holes (h+) recombination. The results of reusability revealed that the nanocomposite can be used several times without a significant change in its photocatalytic activity. Owing to the ease of synthetic strategy, cost-effective starting materials, and high photodegradation efficiency, a-ZrP/g-C3N4 composite has the potential to be a promising photocatalyst to remediate water-containing indigo carmine dye.
科研通智能强力驱动
Strongly Powered by AbleSci AI