滚动轴承
粒子群优化
峰度
振动
小波
信号(编程语言)
降噪
方位(导航)
算法
噪音(视频)
小波包分解
断层(地质)
计算机科学
工程类
小波变换
控制理论(社会学)
人工智能
数学
声学
物理
统计
图像(数学)
控制(管理)
地震学
程序设计语言
地质学
作者
Swarup Kumar Laha,B. Swarnakar,Sourav Kansabanik,Sayantani Ray
标识
DOI:10.1016/j.matpr.2022.07.386
摘要
In this paper, a novel signal denoising method based on Stationary Wavelet Transform and Particle Swarm Optimization Algorithm (SWT-PSO) is proposed. The threshold values for wavelet denoising are selected using the meta-heuristic algorithm of particle swarm optimization such that the denoised signal has maximum weighted kurtosis. In many faulty rotating machinery elements such as rolling element bearings and gears, impact-type vibration signals are produced. Such impact type vibration signals have a high value of kurtosis. The proposed SWT-PSO scheme can be used for the enhancement of fault signature in rotating machinery by increasing the kurtosis of such signals. The proposed algorithm has been applied on simulated as well as experimental defective rolling element bearing signal. Vibration signals from rolling element bearing with inner race and outer race defects are acquired by accelerometers on a Machinery Fault Simulator (MFS) setup. Then the proposed methodology is applied successfully to denoise the signals at various noise levels. Further, Spectrum envelope of the denoised vibration signal is used to obtain the characteristic defect frequencies. The developed methodology is finally compared with widely used Minimum Entropy Deconvolution (MED) algorithm. It has been demonstrated that the proposed algorithm has better capability of extracting the impulsive characteristic as well as preserving the signal geometrical structure than compared to MED.
科研通智能强力驱动
Strongly Powered by AbleSci AI