Artificial intelligence for predicting survival following deceased donor liver transplantation: Retrospective multi-center study

医学 接收机工作特性 肝移植 随机森林 比例危险模型 终末期肝病模型 移植 内科学 生存分析 决策树 机器学习 计算机科学
作者
Young‐Dong Yu,Kwang‐Sig Lee,Jong Man Kim,Je Ho Ryu,Jae Geun Lee,Kwang‐Woong Lee,Bong‐Wan Kim,Dong‐Sik Kim
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:105: 106838-106838 被引量:10
标识
DOI:10.1016/j.ijsu.2022.106838
摘要

Previous studies have indicated that the model for end-stage liver disease (MELD) score may fail to predict post-transplantation patient survival. Similarly, other scores (donor MELD score, balance of risk score) that have been developed to predict transplant outcomes have not gained widespread use. These scores are typically derived using linear statistical models. This study aimed to compare the performance of traditional statistical models with machine learning approaches for predicting survival following liver transplantation.Data were obtained from 785 deceased donor liver transplant recipients enrolled in the Korean Organ Transplant Registry (2014-2019). Five machine learning methods (random forest, artificial neural networks, decision tree, naïve Bayes, and support vector machine) and four traditional statistical models (Cox regression, MELD score, donor MELD score and balance of risk score) were compared to predict survival.Among the machine learning methods, the random forest yielded the highest area under the receiver operating characteristic curve (AUC-ROC) values (1-month = 0.80; 3-month = 0.85; and 12-month = 0.81) for predicting survival. The AUC-ROC values of the Cox regression analysis were 0.75, 0.86, and 0.77 for 1-month, 3-month, and 12-month post-transplant survival, respectively. However, the AUC-ROC values of the MELD, donor MELD, and balance of risk scores were all below 0.70. Based on the variable importance of the random forest analysis in this study, the major predictors associated with survival were cold ischemia time, donor ICU stay, recipient weight, recipient BMI, recipient age, recipient INR, and recipient albumin level. As with the Cox regression analysis, donor ICU stay, donor bilirubin level, BAR score, and recipient albumin levels were also important factors associated with post-transplant survival in the RF model. The coefficients of these variables were also statistically significant in the Cox model (p < 0.05). The SHAP ranges for selected predictors for the 12-month survival were (-0.02,0.10) for recipient albumin, (-0.05,0.07) for donor bilirubin and (-0.02,0.25) for recipient height. Surprisingly, although not statistically significant in the Cox model, recipient weight, recipient BMI, recipient age, or recipient INR were important factors in our random forest model for predicting post-transplantation survival.Machine learning algorithms such as the random forest were superior to conventional Cox regression and previously reported survival scores for predicting 1-month, 3-month, and 12-month survival following liver transplantation. Therefore, artificial intelligence may have significant potential in aiding clinical decision-making during liver transplantation, including matching donors and recipients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
flywo完成签到,获得积分20
1秒前
1秒前
Ava应助葫芦瓢采纳,获得10
1秒前
传统的妖妖完成签到,获得积分20
2秒前
3秒前
沉静的怜蕾完成签到 ,获得积分10
3秒前
亦hcy发布了新的文献求助10
4秒前
fanmo发布了新的文献求助10
5秒前
5秒前
PENGDOCTOR发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
烟雾完成签到,获得积分10
9秒前
9秒前
充电宝应助ly普鲁卡因采纳,获得10
10秒前
xuexuexixi123完成签到 ,获得积分10
10秒前
10秒前
天天快乐应助Sink采纳,获得10
11秒前
13秒前
LZHWSND发布了新的文献求助10
13秒前
大翔守住了完成签到,获得积分10
14秒前
yu发布了新的文献求助10
14秒前
ding应助guositing采纳,获得10
15秒前
15秒前
影子完成签到,获得积分10
15秒前
16秒前
16秒前
茶弥完成签到 ,获得积分10
16秒前
17秒前
CipherSage应助莫问采纳,获得10
18秒前
Aurora完成签到,获得积分10
19秒前
阿江shk完成签到,获得积分10
19秒前
lllkkk发布了新的文献求助10
19秒前
damao4361556完成签到,获得积分20
19秒前
19秒前
小蘑菇应助斯文宛秋采纳,获得10
20秒前
希望天下0贩的0应助亦hcy采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124857
求助须知:如何正确求助?哪些是违规求助? 2775196
关于积分的说明 7725657
捐赠科研通 2430668
什么是DOI,文献DOI怎么找? 1291358
科研通“疑难数据库(出版商)”最低求助积分说明 622123
版权声明 600328