亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence for predicting survival following deceased donor liver transplantation: Retrospective multi-center study

医学 中心(范畴论) 回顾性队列研究 肝移植 移植 外科 结晶学 化学
作者
Young‐Dong Yu,Kwang‐Sig Lee,Jong Man Kim,Je Ho Ryu,Jae Geun Lee,Kwang‐Woong Lee,Bong‐Wan Kim,Dong‐Sik Kim
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:105: 106838-106838 被引量:21
标识
DOI:10.1016/j.ijsu.2022.106838
摘要

Previous studies have indicated that the model for end-stage liver disease (MELD) score may fail to predict post-transplantation patient survival. Similarly, other scores (donor MELD score, balance of risk score) that have been developed to predict transplant outcomes have not gained widespread use. These scores are typically derived using linear statistical models. This study aimed to compare the performance of traditional statistical models with machine learning approaches for predicting survival following liver transplantation.Data were obtained from 785 deceased donor liver transplant recipients enrolled in the Korean Organ Transplant Registry (2014-2019). Five machine learning methods (random forest, artificial neural networks, decision tree, naïve Bayes, and support vector machine) and four traditional statistical models (Cox regression, MELD score, donor MELD score and balance of risk score) were compared to predict survival.Among the machine learning methods, the random forest yielded the highest area under the receiver operating characteristic curve (AUC-ROC) values (1-month = 0.80; 3-month = 0.85; and 12-month = 0.81) for predicting survival. The AUC-ROC values of the Cox regression analysis were 0.75, 0.86, and 0.77 for 1-month, 3-month, and 12-month post-transplant survival, respectively. However, the AUC-ROC values of the MELD, donor MELD, and balance of risk scores were all below 0.70. Based on the variable importance of the random forest analysis in this study, the major predictors associated with survival were cold ischemia time, donor ICU stay, recipient weight, recipient BMI, recipient age, recipient INR, and recipient albumin level. As with the Cox regression analysis, donor ICU stay, donor bilirubin level, BAR score, and recipient albumin levels were also important factors associated with post-transplant survival in the RF model. The coefficients of these variables were also statistically significant in the Cox model (p < 0.05). The SHAP ranges for selected predictors for the 12-month survival were (-0.02,0.10) for recipient albumin, (-0.05,0.07) for donor bilirubin and (-0.02,0.25) for recipient height. Surprisingly, although not statistically significant in the Cox model, recipient weight, recipient BMI, recipient age, or recipient INR were important factors in our random forest model for predicting post-transplantation survival.Machine learning algorithms such as the random forest were superior to conventional Cox regression and previously reported survival scores for predicting 1-month, 3-month, and 12-month survival following liver transplantation. Therefore, artificial intelligence may have significant potential in aiding clinical decision-making during liver transplantation, including matching donors and recipients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
1秒前
12秒前
地表飞猪应助zzz采纳,获得50
12秒前
zzz完成签到,获得积分10
18秒前
19秒前
mengzhe发布了新的文献求助10
25秒前
51秒前
忘忧Aquarius完成签到,获得积分10
1分钟前
SDNUDRUG完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
chenlc971125完成签到 ,获得积分10
2分钟前
Mia发布了新的文献求助10
2分钟前
wang完成签到,获得积分0
2分钟前
十柒完成签到 ,获得积分10
2分钟前
韩寒完成签到 ,获得积分10
2分钟前
延时小马达完成签到,获得积分10
3分钟前
Mia完成签到,获得积分10
3分钟前
3分钟前
Mia关注了科研通微信公众号
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
陈开发布了新的文献求助10
3分钟前
Alex完成签到,获得积分0
4分钟前
可可完成签到 ,获得积分10
4分钟前
打打应助mengzhe采纳,获得10
4分钟前
JamesPei应助Shuo采纳,获得30
4分钟前
4分钟前
mengzhe发布了新的文献求助10
4分钟前
胡萝卜完成签到,获得积分10
4分钟前
隐形的雁完成签到,获得积分10
5分钟前
满意的伊完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
小马甲应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957927
求助须知:如何正确求助?哪些是违规求助? 4219149
关于积分的说明 13133243
捐赠科研通 4002219
什么是DOI,文献DOI怎么找? 2190252
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625