Artificial intelligence for predicting survival following deceased donor liver transplantation: Retrospective multi-center study

医学 中心(范畴论) 回顾性队列研究 肝移植 移植 外科 结晶学 化学
作者
Young‐Dong Yu,Kwang‐Sig Lee,Jong Man Kim,Je Ho Ryu,Jae Geun Lee,Kwang‐Woong Lee,Bong‐Wan Kim,Dong‐Sik Kim
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:105: 106838-106838 被引量:21
标识
DOI:10.1016/j.ijsu.2022.106838
摘要

Previous studies have indicated that the model for end-stage liver disease (MELD) score may fail to predict post-transplantation patient survival. Similarly, other scores (donor MELD score, balance of risk score) that have been developed to predict transplant outcomes have not gained widespread use. These scores are typically derived using linear statistical models. This study aimed to compare the performance of traditional statistical models with machine learning approaches for predicting survival following liver transplantation.Data were obtained from 785 deceased donor liver transplant recipients enrolled in the Korean Organ Transplant Registry (2014-2019). Five machine learning methods (random forest, artificial neural networks, decision tree, naïve Bayes, and support vector machine) and four traditional statistical models (Cox regression, MELD score, donor MELD score and balance of risk score) were compared to predict survival.Among the machine learning methods, the random forest yielded the highest area under the receiver operating characteristic curve (AUC-ROC) values (1-month = 0.80; 3-month = 0.85; and 12-month = 0.81) for predicting survival. The AUC-ROC values of the Cox regression analysis were 0.75, 0.86, and 0.77 for 1-month, 3-month, and 12-month post-transplant survival, respectively. However, the AUC-ROC values of the MELD, donor MELD, and balance of risk scores were all below 0.70. Based on the variable importance of the random forest analysis in this study, the major predictors associated with survival were cold ischemia time, donor ICU stay, recipient weight, recipient BMI, recipient age, recipient INR, and recipient albumin level. As with the Cox regression analysis, donor ICU stay, donor bilirubin level, BAR score, and recipient albumin levels were also important factors associated with post-transplant survival in the RF model. The coefficients of these variables were also statistically significant in the Cox model (p < 0.05). The SHAP ranges for selected predictors for the 12-month survival were (-0.02,0.10) for recipient albumin, (-0.05,0.07) for donor bilirubin and (-0.02,0.25) for recipient height. Surprisingly, although not statistically significant in the Cox model, recipient weight, recipient BMI, recipient age, or recipient INR were important factors in our random forest model for predicting post-transplantation survival.Machine learning algorithms such as the random forest were superior to conventional Cox regression and previously reported survival scores for predicting 1-month, 3-month, and 12-month survival following liver transplantation. Therefore, artificial intelligence may have significant potential in aiding clinical decision-making during liver transplantation, including matching donors and recipients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘忙完成签到,获得积分10
2秒前
2秒前
英姑应助Kevin Huang采纳,获得10
2秒前
2秒前
yy完成签到,获得积分10
2秒前
3秒前
3秒前
脑洞疼应助岁岁有采纳,获得10
3秒前
77完成签到,获得积分10
3秒前
大个应助干净的夜蓉采纳,获得10
4秒前
请叫我风吹麦浪应助he采纳,获得10
4秒前
惕守完成签到,获得积分10
4秒前
grip发布了新的文献求助10
5秒前
斯文冷梅发布了新的文献求助10
5秒前
fuje发布了新的文献求助10
6秒前
水獭完成签到 ,获得积分10
7秒前
7秒前
8秒前
9秒前
zlqq发布了新的文献求助10
10秒前
科研小白鸽关注了科研通微信公众号
10秒前
10秒前
超级夜香完成签到,获得积分20
11秒前
彭于晏应助忘忧采纳,获得10
12秒前
三颗板牙发布了新的文献求助10
13秒前
TYJ发布了新的文献求助10
13秒前
nuomi完成签到,获得积分10
14秒前
14秒前
小鱼儿发布了新的文献求助10
14秒前
14秒前
15秒前
Moihan完成签到,获得积分10
15秒前
15秒前
一月平芜发布了新的文献求助10
18秒前
传奇3应助Kevin Huang采纳,获得10
18秒前
平淡道天发布了新的文献求助10
19秒前
忘忧发布了新的文献求助10
19秒前
能干宛秋发布了新的文献求助30
19秒前
20秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420