Artificial intelligence for predicting survival following deceased donor liver transplantation: Retrospective multi-center study

医学 中心(范畴论) 回顾性队列研究 肝移植 移植 外科 结晶学 化学
作者
Young‐Dong Yu,Kwang‐Sig Lee,Jong Man Kim,Je Ho Ryu,Jae Geun Lee,Kwang‐Woong Lee,Bong‐Wan Kim,Dong‐Sik Kim
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:105: 106838-106838 被引量:21
标识
DOI:10.1016/j.ijsu.2022.106838
摘要

Previous studies have indicated that the model for end-stage liver disease (MELD) score may fail to predict post-transplantation patient survival. Similarly, other scores (donor MELD score, balance of risk score) that have been developed to predict transplant outcomes have not gained widespread use. These scores are typically derived using linear statistical models. This study aimed to compare the performance of traditional statistical models with machine learning approaches for predicting survival following liver transplantation.Data were obtained from 785 deceased donor liver transplant recipients enrolled in the Korean Organ Transplant Registry (2014-2019). Five machine learning methods (random forest, artificial neural networks, decision tree, naïve Bayes, and support vector machine) and four traditional statistical models (Cox regression, MELD score, donor MELD score and balance of risk score) were compared to predict survival.Among the machine learning methods, the random forest yielded the highest area under the receiver operating characteristic curve (AUC-ROC) values (1-month = 0.80; 3-month = 0.85; and 12-month = 0.81) for predicting survival. The AUC-ROC values of the Cox regression analysis were 0.75, 0.86, and 0.77 for 1-month, 3-month, and 12-month post-transplant survival, respectively. However, the AUC-ROC values of the MELD, donor MELD, and balance of risk scores were all below 0.70. Based on the variable importance of the random forest analysis in this study, the major predictors associated with survival were cold ischemia time, donor ICU stay, recipient weight, recipient BMI, recipient age, recipient INR, and recipient albumin level. As with the Cox regression analysis, donor ICU stay, donor bilirubin level, BAR score, and recipient albumin levels were also important factors associated with post-transplant survival in the RF model. The coefficients of these variables were also statistically significant in the Cox model (p < 0.05). The SHAP ranges for selected predictors for the 12-month survival were (-0.02,0.10) for recipient albumin, (-0.05,0.07) for donor bilirubin and (-0.02,0.25) for recipient height. Surprisingly, although not statistically significant in the Cox model, recipient weight, recipient BMI, recipient age, or recipient INR were important factors in our random forest model for predicting post-transplantation survival.Machine learning algorithms such as the random forest were superior to conventional Cox regression and previously reported survival scores for predicting 1-month, 3-month, and 12-month survival following liver transplantation. Therefore, artificial intelligence may have significant potential in aiding clinical decision-making during liver transplantation, including matching donors and recipients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Khr1stINK采纳,获得10
刚刚
刚刚
刚刚
考博圣体完成签到,获得积分10
1秒前
gf完成签到,获得积分10
1秒前
Tsuki完成签到 ,获得积分10
1秒前
小马甲应助平淡的白云采纳,获得10
1秒前
冷月寒寒大魔王完成签到,获得积分20
1秒前
1秒前
今后应助雪松采纳,获得10
2秒前
2秒前
鲸鱼发布了新的文献求助10
2秒前
2秒前
爆米花应助干净冬莲采纳,获得10
2秒前
2秒前
3秒前
3秒前
quan发布了新的文献求助10
3秒前
叮当完成签到,获得积分20
3秒前
3秒前
4秒前
云野华完成签到,获得积分10
4秒前
ysd完成签到,获得积分10
4秒前
emmaguo713完成签到,获得积分10
4秒前
4秒前
诚心寄灵发布了新的文献求助10
4秒前
τ涛发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Tammy发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
标致的坤完成签到,获得积分10
6秒前
6秒前
梅子甜酒发布了新的文献求助10
6秒前
响彻云霄发布了新的文献求助10
6秒前
xh96发布了新的文献求助10
7秒前
7秒前
X_X发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482