Deep learning for visual recognition and detection of aquatic animals: A review

水生生态系统 水产养殖 计算机科学 人工智能 水下 水生环境 目标检测 领域(数学) 机器学习 模式识别(心理学) 生态学 生物 渔业 地理 数学 考古 纯数学
作者
Juan Li,Wenkai Xu,Limiao Deng,Ying Xiao,Zhongzhi Han,Haiyong Zheng
出处
期刊:Reviews in Aquaculture [Wiley]
卷期号:15 (2): 409-433 被引量:72
标识
DOI:10.1111/raq.12726
摘要

Abstract The ocean is an important ecosystem, and aquatic animals play an important role in the biological world, especially in aquaculture. How to accurately and intelligently recognise and detect aquatic animals is one of the urgent problems in the field of underwater biological detection. The wide applications of artificial intelligence (AI), especially deep learning (DL), provide new opportunities and challenges for the efficient and intelligent exploration of aquatic animals. DL has been widely used in the visual recognition and detection of terrestrial animals, but it is in the early stages of use for aquatic animals due to the complexity of underwater environment and the difficulty of data acquisition. Here, this article reviews the current application status of DL for aquatic animals, potential challenges and future directions. The key advances of DL algorithms applied to the visual recognition and detection of aquatic animals are generalised, including datasets, algorithms and performance. The applications of DL are summarised in aquatic animals, including image detection, video detection, species classification, biomass estimation, behaviour analysis and food safety. Furthermore, the challenges are summed up and classified in the object recognition and detection domain for aquatic animals. Finally, further research direction is discussed and the conclusions are drawn. The key advances of DL in the recognition and detection of aquatic animals will help to further excavate and extend the application of DL in the field of marine biological exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pt-SACs完成签到,获得积分10
1秒前
小二郎应助夏侯无色采纳,获得10
1秒前
Sicily完成签到,获得积分10
5秒前
6秒前
默默碧空发布了新的文献求助10
7秒前
Song完成签到 ,获得积分10
10秒前
冷傲凝琴发布了新的文献求助10
12秒前
上官若男应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
wu8577应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
14秒前
李健应助科研通管家采纳,获得30
14秒前
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
14秒前
wu8577应助科研通管家采纳,获得10
14秒前
Akim应助欢喜的跳跳糖采纳,获得10
15秒前
16秒前
18秒前
英姑应助MRCHONG采纳,获得10
20秒前
XieMeina发布了新的文献求助30
21秒前
doudou完成签到,获得积分10
21秒前
玊尔发布了新的文献求助10
22秒前
博学为农发布了新的文献求助10
23秒前
Andyhacker完成签到,获得积分10
25秒前
小焦儿完成签到,获得积分10
30秒前
塔莉娅完成签到,获得积分10
31秒前
33秒前
烟花应助budingman采纳,获得20
34秒前
34秒前
35秒前
称心凡霜完成签到,获得积分10
36秒前
xiaoyao发布了新的文献求助30
37秒前
37秒前
37秒前
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382