金属有机骨架
材料科学
电化学
法拉第效率
催化作用
可逆氢电极
选择性
卤素
吸附
Atom(片上系统)
金属
无机化学
纳米技术
电极
物理化学
化学
工作电极
有机化学
冶金
烷基
嵌入式系统
计算机科学
作者
Ya Zhang,Qiang Zhou,Zhao‐Feng Qiu,Xiao‐Yu Zhang,Jia‐Qi Chen,Yue Zhao,Feng Gong,Wei‐Yin Sun
标识
DOI:10.1002/adfm.202203677
摘要
Abstract The coordination microenvironment of metal active sites in metal–organic frameworks (MOFs) plays a crucial role in its performance for electrochemical CO 2 reduction reaction (CO 2 RR). However, it remains a challenge to clarify the structure–performance relationship for CO 2 RR catalyzed by MOFs. Herein, a series of MOFs with different coordination microenvironments of Cu(I) sites (CuCl, CuBr, and CuI) to evaluate their performances for CO 2 RR is synthesized. With the increasing radius of halogen atom, the CO 2 adsorption capacity increases and d‐band center of Cu positively shifts to the Fermi level, leading to enhance the selectivity of CO 2 to CH 4 conversion. CuI gives the highest total Faradaic efficiency (FE) of 83.2%, with a FE of CH 4 up to 57.2% and CH 4 partial current density of 60.7 mA cm −2 at −1.08 V versus reversible hydrogen electrode. Theoretical calculations reveal that the shifted d‐band center of Cu site contributes to reduced formation energies of *CH 2 O and *CH 3 O intermediates, which is the potential‐determining step of CO 2 RR and thus facilitates the electrocatalytic CO 2 reduction to CH 4 . This study opens a new avenue for studying the relationship between the coordination microenvironment of active site and electroreduction reaction performance of MOFs.
科研通智能强力驱动
Strongly Powered by AbleSci AI