Network modeling of major depressive disorder symptoms in adult women

重性抑郁障碍 心情 中心性 心理学 萧条(经济学) 精神科 贝叶斯网络 心理干预 临床心理学 计算机科学 数学 组合数学 宏观经济学 人工智能 经济
作者
Sheida Moradi,Mohammad Reza Falsafinejad,Ali Delavar,Vahid Rezaei Tabar,Ahmad Borjali,Steven H. Aggen,Kenneth S. Kendler
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:53 (12): 5449-5458 被引量:8
标识
DOI:10.1017/s0033291722002604
摘要

Major depressive disorder (MDD) is one of the growing human mental health challenges facing the global health care system. In this study, the structural connectivity between symptoms of MDD is explored using two different network modeling approaches.Data are from 'the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders (VATSPSUD)'. A cohort of N = 2163 American Caucasian female-female twins was assessed as part of the VATSPSUD study. MDD symptoms were assessed using personal structured clinical interviews. Two network analyses were conducted. First, an undirected network model was estimated to explore the connectivity between the MDD symptoms. Then, using a Bayesian network, we computed a directed acyclic graph (DAG) to investigate possible directional relationships between symptoms.Based on the results of the undirected network, the depressed mood symptom had the highest centrality value, indicating its importance in the overall network of MDD symptoms. Bayesian network analysis indicated that depressed mood emerged as a plausible driving symptom for activating other symptoms. These results are consistent with DSM-5 guidelines for MDD. Also, somatic weight and appetite symptoms appeared as the strongest connections in both networks.We discuss how the findings of our study might help future research to detect clinically relevant symptoms and possible directional relationships between MDD symptoms defining major depression episodes, which would help identify potential tailored interventions. This is the first study to investigate the network structure of VATSPSUD data using both undirected and directed network models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黄烨发布了新的文献求助10
1秒前
Jacquielin发布了新的文献求助10
1秒前
lxcy0612发布了新的文献求助10
1秒前
2秒前
2秒前
ER完成签到,获得积分10
2秒前
2633148059发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
木木完成签到,获得积分10
5秒前
6秒前
王敬顺发布了新的文献求助10
6秒前
无奈的幻雪完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
jueding应助尹善冰采纳,获得10
9秒前
lyy发布了新的文献求助10
9秒前
梓树发布了新的文献求助10
9秒前
9秒前
沐晨浠完成签到,获得积分10
10秒前
十号完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
英俊的铭应助淑芬采纳,获得10
11秒前
李爱国应助斯文123采纳,获得10
11秒前
王智勇发布了新的文献求助10
11秒前
wanci应助风吹阔叶采纳,获得10
11秒前
12秒前
12秒前
12秒前
科研求助111完成签到,获得积分10
13秒前
Alice完成签到,获得积分10
13秒前
Jacquielin完成签到,获得积分10
13秒前
嗯嗯发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049