TS-SHES: Terrain Segmentation in Complex-Valued PolSAR Images Via Scattering Harmonization and Explicit Supervision

计算机科学 人工智能 散射 合成孔径雷达 分割 卷积神经网络 特征(语言学) 地形 模式识别(心理学) 图像分割 遥感 地质学 物理 地图学 地理 光学 语言学 哲学
作者
Xuan Zeng,Zhirui Wang,Ke Feng,Xin Gao,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:2
标识
DOI:10.1109/tgrs.2022.3204705
摘要

Convolutional neural network (CNN) has attracted extensive attention in the research field of polarimetric synthetic aperture radar (PolSAR) terrain segmentation. However, directly using CNN in PolSAR terrain segmentation while ignoring the characteristics of PolSAR images has become the main factor restricting the performance of algorithms. In this article, we propose an efficient PolSAR terrain segmentation algorithm called TS-SHES, which integrates the polarization scattering characteristics of PolSAR images and the CNN learning process into a unified architecture. First, considering the intrinsic structure of complex-valued PolSAR data, TS-SHES transforms the scattering matrix into the form of amplitude and phase components, which preserves the original information maximally. Then, TS-SHES introduces a scattering harmonized encoding method (SH-Enc) to balance the feature contributions of weak and strong scattering regions as well as map the two components into the same representation space. Through the above scattering harmonization operations, the segmentation performance of CNN on weak scattering regions can be improved, and the feature imbalance in amplitude and phase can be alleviated. Furthermore, in view of the implicit states of CNN feature construction, a scattering explicit learning network (SEL-Net) is presented to collect the scattering features of amplitude and phase. Via explicit supervision, SEL-Net avoids the incomplete collection of scattering information caused by implicit feature construction, thereby improving the segmentation accuracy. Abundant experiments are conducted on two PolSAR images acquired by the GaoFen-3 satellite, which demonstrates the superiority of our proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈发布了新的文献求助10
刚刚
gybreeze发布了新的文献求助10
1秒前
wanci应助静香采纳,获得10
1秒前
3秒前
4秒前
iq_lv完成签到,获得积分10
5秒前
6秒前
沐沐心完成签到 ,获得积分10
7秒前
may发布了新的文献求助10
9秒前
HAL9000发布了新的文献求助10
9秒前
镓氧锌钇铀应助忌辛辣采纳,获得20
9秒前
哈哈哈完成签到,获得积分10
10秒前
静香完成签到,获得积分10
10秒前
李健的小迷弟应助1234采纳,获得10
10秒前
zjq发布了新的文献求助10
12秒前
15秒前
15秒前
Profeto应助生科进行中采纳,获得10
15秒前
情怀应助111采纳,获得10
16秒前
谢挽风完成签到,获得积分10
16秒前
包子完成签到,获得积分10
16秒前
17秒前
隐形曼青应助gybreeze采纳,获得10
18秒前
19秒前
eason完成签到,获得积分10
20秒前
刘强关注了科研通微信公众号
20秒前
21秒前
雾栎昇完成签到,获得积分10
21秒前
21秒前
22秒前
Yang2完成签到,获得积分10
22秒前
大个应助小熊同学采纳,获得10
22秒前
辛坦夫完成签到 ,获得积分10
23秒前
23秒前
ll发布了新的文献求助10
23秒前
静香发布了新的文献求助10
25秒前
yfh1997发布了新的文献求助10
25秒前
CipherSage应助HAL9000采纳,获得10
26秒前
高兴不尤发布了新的文献求助10
27秒前
Tristan发布了新的文献求助10
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208238
求助须知:如何正确求助?哪些是违规求助? 4385876
关于积分的说明 13658770
捐赠科研通 4244690
什么是DOI,文献DOI怎么找? 2328900
邀请新用户注册赠送积分活动 1326691
关于科研通互助平台的介绍 1278875