TS-SHES: Terrain Segmentation in Complex-Valued PolSAR Images Via Scattering Harmonization and Explicit Supervision

计算机科学 人工智能 散射 合成孔径雷达 分割 卷积神经网络 特征(语言学) 地形 模式识别(心理学) 图像分割 遥感 地质学 物理 地图学 地理 光学 哲学 语言学
作者
Xuan Zeng,Zhirui Wang,Ke Feng,Xin Gao,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:2
标识
DOI:10.1109/tgrs.2022.3204705
摘要

Convolutional neural network (CNN) has attracted extensive attention in the research field of polarimetric synthetic aperture radar (PolSAR) terrain segmentation. However, directly using CNN in PolSAR terrain segmentation while ignoring the characteristics of PolSAR images has become the main factor restricting the performance of algorithms. In this article, we propose an efficient PolSAR terrain segmentation algorithm called TS-SHES, which integrates the polarization scattering characteristics of PolSAR images and the CNN learning process into a unified architecture. First, considering the intrinsic structure of complex-valued PolSAR data, TS-SHES transforms the scattering matrix into the form of amplitude and phase components, which preserves the original information maximally. Then, TS-SHES introduces a scattering harmonized encoding method (SH-Enc) to balance the feature contributions of weak and strong scattering regions as well as map the two components into the same representation space. Through the above scattering harmonization operations, the segmentation performance of CNN on weak scattering regions can be improved, and the feature imbalance in amplitude and phase can be alleviated. Furthermore, in view of the implicit states of CNN feature construction, a scattering explicit learning network (SEL-Net) is presented to collect the scattering features of amplitude and phase. Via explicit supervision, SEL-Net avoids the incomplete collection of scattering information caused by implicit feature construction, thereby improving the segmentation accuracy. Abundant experiments are conducted on two PolSAR images acquired by the GaoFen-3 satellite, which demonstrates the superiority of our proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
臻君完成签到,获得积分20
2秒前
英俊的铭应助SQDHZJ采纳,获得10
3秒前
3秒前
ning完成签到 ,获得积分10
4秒前
Carol发布了新的文献求助10
6秒前
6秒前
8秒前
Lucas应助重要手机采纳,获得10
9秒前
怕黑道消完成签到 ,获得积分10
9秒前
背后的果汁完成签到,获得积分10
11秒前
彩色草莓发布了新的文献求助30
12秒前
12秒前
12秒前
16秒前
17秒前
gishisei发布了新的文献求助10
17秒前
LL完成签到,获得积分10
18秒前
minghanl完成签到,获得积分10
18秒前
乐乐应助时尚的开山采纳,获得10
18秒前
18秒前
20秒前
无奈醉柳完成签到 ,获得积分20
21秒前
意安发布了新的文献求助10
21秒前
大模型应助土星采纳,获得10
21秒前
22秒前
8R60d8应助liyi采纳,获得10
23秒前
卡皮巴拉发布了新的文献求助10
23秒前
23秒前
24秒前
乐乐应助橘络采纳,获得10
25秒前
重要手机发布了新的文献求助10
25秒前
25秒前
开心夜云完成签到,获得积分10
29秒前
小付发布了新的文献求助10
29秒前
李健应助天亮了采纳,获得10
29秒前
30秒前
33秒前
充电宝应助大大豆腐干采纳,获得10
33秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589