粒体自噬
生物
细胞生物学
干细胞
线粒体分裂
线粒体融合
线粒体
蛋白质稳态
再生(生物学)
氧化磷酸化
再生医学
线粒体DNA
遗传学
细胞凋亡
自噬
生物化学
基因
作者
Xiaotong Hong,Joan Isern,Silvia Campanario,Eusebio Perdiguero,Ignacio Ramírez‐Pardo,Jessica Segalés,Pablo Hernansanz‐Agustín,Andrea Curtabbi,Oleg Deryagin,Ángela Pollán,José A. González‐Reyes,José M. Villalba,Marco Sandri,Antonio L. Serrano,José Antonio Enrı́quez,Pura Muñoz‐Cánoves
出处
期刊:Cell Stem Cell
[Elsevier]
日期:2022-08-22
卷期号:29 (9): 1298-1314.e10
被引量:80
标识
DOI:10.1016/j.stem.2022.07.009
摘要
Skeletal muscle regeneration depends on the correct expansion of resident quiescent stem cells (satellite cells), a process that becomes less efficient with aging. Here, we show that mitochondrial dynamics are essential for the successful regenerative capacity of satellite cells. The loss of mitochondrial fission in satellite cells-due to aging or genetic impairment-deregulates the mitochondrial electron transport chain (ETC), leading to inefficient oxidative phosphorylation (OXPHOS) metabolism and mitophagy and increased oxidative stress. This state results in muscle regenerative failure, which is caused by the reduced proliferation and functional loss of satellite cells. Regenerative functions can be restored in fission-impaired or aged satellite cells by the re-establishment of mitochondrial dynamics (by activating fission or preventing fusion), OXPHOS, or mitophagy. Thus, mitochondrial shape and physical networking controls stem cell regenerative functions by regulating metabolism and proteostasis. As mitochondrial fission occurs less frequently in the satellite cells in older humans, our findings have implications for regeneration therapies in sarcopenia.
科研通智能强力驱动
Strongly Powered by AbleSci AI