Global microplastic (MP) pollution is a serious environmental problem that has been found in various ecosystems, especially marine ecosystems. In this study, the water (surface, middle and bottom water), sediment and fish (pelagic, demersal and benthic fish) in the artificial reef area and adjacent waters in Haizhou Bay were collected, and the mechanism of MP transmission among the three media was analyzed. The results showed that >96 % of the plastics in the region were MPs. The shape of MPs was mainly fibrous (water (73.3 %), sediment (56 %), fish (95.3 %)), color was mainly blue (water (49.3 %), sediment (47 %), fish (72.3 %)), and the material was mainly PET (water (39.6 %), sediment (33 %), fish (86.6 %)). We found that, except for the natural deposition of MPs, MPs could be ingested by pelagic fish and transmitted through vertical movement in the water, while there was an interaction between MPs in benthic fishes and the middle-bottom waters. In addition, as relevant variables, body length and body weight were more likely to explain the number of MPs ingested by fishes than were δ13C and δ15N. Therefore, based on the linear relationship between δ15N and body length, we concluded that there was a weak trophic magnification effect of MPs ingested by fish in this region. This study provides unique information for further exploring the factors influencing the spatial distribution of MPs and the transmission mechanism of MPs in fish.