Sliding-impact bistable triboelectric nanogenerator for enhancing energy harvesting from low-frequency intrawell oscillation

能量收集 双稳态 振荡(细胞信号) 纳米发生器 摩擦电效应 振动 控制理论(社会学) 低频振荡 机械能 能量(信号处理) 功率(物理) 物理 声学 计算机科学 电力系统 光电子学 压电 量子力学 生物 遗传学 控制(管理) 人工智能
作者
Dongguo Tan,Jiaxi Zhou,Kai Wang,Huajiang Ouyang,Huai Zhao,Daolin Xu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:184: 109731-109731 被引量:18
标识
DOI:10.1016/j.ymssp.2022.109731
摘要

A sliding-mode bistable triboelectric nanogenerator (SBTENG) has already been proven to be highly efficient for harvesting energy from low-frequency vibration. However, a SBTENG would undergo low-amplitude intrawell oscillation and thus output low power, if the excitation is weak. To enhance the efficiency of harvesting energy from low-frequency intrawell oscillation, a novel sliding-impact bistable TENG (SIBTENG) is proposed. The sliding-mode component of the SIBTENG enables energy harvesting from interwell oscillation effectively, while the impact-mode structure plays a vital role in enhancing energy harvesting from intrawell oscillation. The equation of motion of the SIBTENG is derived using Hamilton’s principle and then numerically solved to obtain the dynamic responses. Subsequently, the output performance of the SIBTENG is evaluated by solving the electrical equation, which is unidirectional coupled to the equation of motion. Finally, experiments on the prototype of the SIBTENG are conducted to verify this design concept, which indicates good consistency between the theoretical and experimental results. Importantly, the impact-mode structure can notably enhance energy harvesting from intrawell oscillation. The output power of the devised SIBTENG is improved by about 100% over the SBTENG when they experience intrawell oscillation. The SIBTENG thereby enables high-efficiency energy harvesting whatever the oscillation pattern is.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖发布了新的文献求助10
刚刚
刚刚
跳跃尔容完成签到,获得积分10
1秒前
wyblobin完成签到,获得积分10
1秒前
1秒前
2秒前
沉默沛岚完成签到,获得积分10
2秒前
丰知然应助宇文宛菡采纳,获得10
2秒前
所所应助tu采纳,获得30
3秒前
mechefy完成签到,获得积分10
3秒前
鲤鱼萧完成签到,获得积分10
4秒前
宗笑晴完成签到,获得积分10
4秒前
5秒前
小蘑菇应助头发乱了采纳,获得10
5秒前
代萌萌发布了新的文献求助10
6秒前
jucy发布了新的文献求助50
6秒前
6秒前
Lz完成签到,获得积分10
6秒前
Hello应助葛辉辉采纳,获得10
6秒前
秦嘉旎完成签到,获得积分10
7秒前
华仔应助通~采纳,获得10
7秒前
万能图书馆应助半颗橙子采纳,获得10
7秒前
樱铃完成签到,获得积分10
8秒前
8秒前
上官若男应助俭朴的明轩采纳,获得10
8秒前
1199发布了新的文献求助10
9秒前
英姑应助包容的过客采纳,获得10
10秒前
标致的战斗机完成签到,获得积分10
10秒前
科研人发布了新的文献求助10
11秒前
hl完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI5应助dingdong采纳,获得10
12秒前
Jasper应助幸福胡萝卜采纳,获得10
12秒前
爱看文献的小羽毛完成签到,获得积分10
12秒前
13秒前
song99发布了新的文献求助10
13秒前
13秒前
juan完成签到 ,获得积分10
13秒前
徐安琪完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762