已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Electrostatic field and nano-adsorbent refining of fatty acid methyl esters

精炼(冶金) 吸附 化学 纳米- 脂肪酸甲酯 核化学 有机化学 色谱法 材料科学 催化作用 生物柴油 复合材料 物理化学
作者
Li Zhou,Timothy J. Tse,Farley Chicilo,Jianheng Shen,Venkatesh Meda,Martin J. T. Reaney
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:373: 133679-133679 被引量:2
标识
DOI:10.1016/j.jclepro.2022.133679
摘要

Conventional crude fatty acid methyl ester (FAME) refining requires the use of expensive infrastructure, demands large water inputs, generates substantial amounts of waste, and is associated with substantial amounts of loss of FAME. In this study, electrostatic field (E-field) and nano-adsorbents were employed as novel tools in refining crude FAME. A reduction (37.6%) in soap content was immediately observed after treatment via E-field; however, total glyceride content remained unchanged. Soap content in crude FAME was further significantly reduced through the addition (<4 wt %) of nano-adsorbents (Al2O3, SiO2, and TiO2) in 6 min, with minimal agitation (≤600 rpm), and at ambient temperature. After adsorption, the spent Al2O3, SiO2, and TiO2 nano-adsorbents were successfully removed from FAME via E-field treatment, as observed by a reduction of 79.3 wt %, 75.4 wt % and 19.0 wt %, respectively. In addition, minimal FAME loss (0.66 wt %) was observed when using E-field treatment. Similarly, nano-adsorbent treatments were reported causing FAME loss of 0.45 wt %, 2.7 wt %, and 2.1 wt % for Al2O3, SiO2, and TiO2 nano-adsorbents, respectively. Furthermore, none of these treatments affected the FAME profile and, therefore, it is likely that exposure to the E-field did not affect FAME chemistry. The Al2O3 nano-adsorbent was successfully washed and reused for refining FAME. Altogether, crude FAME refining utilizing both E-field and nano-adsorbents treatment technologies offers distinct advantages as alternatives to conventional FAME refining methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的初蓝完成签到 ,获得积分10
2秒前
CC完成签到 ,获得积分10
3秒前
xingxing发布了新的文献求助10
3秒前
4秒前
Magali发布了新的文献求助10
4秒前
DSUNNY完成签到 ,获得积分10
4秒前
6秒前
6秒前
7秒前
漂亮糖豆发布了新的文献求助10
8秒前
搜集达人应助hyhyhyhy采纳,获得10
10秒前
独特的初彤完成签到 ,获得积分10
10秒前
11秒前
GSH完成签到,获得积分20
12秒前
周杰完成签到,获得积分10
12秒前
13秒前
敬业乐群完成签到,获得积分10
14秒前
绿柏发布了新的文献求助10
16秒前
17秒前
土土不土发布了新的文献求助10
17秒前
8R60d8应助GSH采纳,获得40
18秒前
若水发布了新的文献求助10
18秒前
SUNNYONE完成签到 ,获得积分10
19秒前
Owen应助多情浩轩采纳,获得10
19秒前
源孤律醒完成签到 ,获得积分10
21秒前
忍蛙发布了新的文献求助10
22秒前
25秒前
活泼的机器猫完成签到 ,获得积分10
27秒前
天天快乐应助激昂的逊采纳,获得10
30秒前
32秒前
若水完成签到,获得积分10
32秒前
绿柏完成签到,获得积分10
35秒前
养乐多敬你完成签到 ,获得积分10
37秒前
38秒前
38秒前
Ava应助绿柏采纳,获得10
39秒前
39秒前
hyhyhyhy发布了新的文献求助10
42秒前
子凡完成签到 ,获得积分10
43秒前
激昂的逊发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469843
求助须知:如何正确求助?哪些是违规求助? 4572859
关于积分的说明 14337388
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465253
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259