Differential diagnoses of gallbladder tumors using CT‐based deep learning

医学诊断 胆囊 鉴别诊断 医学 人工智能 病理 放射科 内科学 计算机科学
作者
Hiroaki Fujita,Taiichi Wakiya,Keinosuke Ishido,Norihisa Kimura,Hayato Nagase,Taishu Kanda,Masashi Matsuzaka,Yoshihiro Sasaki,Kenichi Hakamada
出处
期刊:Annals of gastroenterological surgery [Wiley]
卷期号:6 (6): 823-832 被引量:10
标识
DOI:10.1002/ags3.12589
摘要

Abstract Background The differential diagnosis between gallbladder cancer (GBC) and xanthogranulomatous cholecystitis (XGC) remains quite challenging, and can possibly lead to improper surgery. This study aimed to distinguish between XGC and GBC by combining computed tomography (CT) images and deep learning (DL) to maximize the therapeutic success of surgery. Methods We collected a dataset, including preoperative CT images, from 28 cases of GBC and 21 XGC patients undergoing surgery at our facility. It was subdivided into training and validation (n = 40), and test (n = 9) datasets. We built a CT patch‐based discriminating model using a residual convolutional neural network and employed 5‐fold cross‐validation. The discriminating performance of the model was analyzed in the test dataset. Results Of the 40 patients in the training dataset, GBC and XGC were observed in 21 (52.5%), and 19 (47.5%) patients, respectively. A total of 61 126 patches were extracted from the 40 patients. In the validation dataset, the average sensitivity, specificity, and accuracy were 98.8%, 98.0%, and 98.5%, respectively. Furthermore, the area under the receiver operating characteristic curve (AUC) was 0.9985. In the test dataset, which included 11 738 patches, the discriminating accuracy for GBC patients after neoadjuvant chemotherapy (NAC) (n = 3) was insufficient (61.8%). However, the discriminating model demonstrated high accuracy (98.2%) and AUC (0.9893) for cases other than those receiving NAC. Conclusion Our CT‐based DL model exhibited high discriminating performance in patients with GBC and XGC. Our study proposes a novel concept for selecting the appropriate procedure and avoiding unnecessary invasive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jiamso发布了新的文献求助20
1秒前
科目三应助24号甜冰茶采纳,获得10
5秒前
风趣的惜天完成签到 ,获得积分10
6秒前
SunGuoping发布了新的文献求助10
7秒前
曾医生发布了新的文献求助10
8秒前
orixero应助栗子鱼采纳,获得10
8秒前
CodeCraft应助Chiang采纳,获得10
12秒前
壶里有水发布了新的文献求助10
16秒前
田兆文应助24号甜冰茶采纳,获得10
17秒前
曾医生完成签到,获得积分10
19秒前
王弘化应助ppp采纳,获得10
19秒前
大雨发布了新的文献求助10
19秒前
20秒前
sunshine应助大雨采纳,获得10
23秒前
在水一方应助狮子座采纳,获得10
24秒前
太叔丹翠发布了新的文献求助10
25秒前
JoeJ应助helinahs采纳,获得10
26秒前
27秒前
28秒前
29秒前
energyharvester完成签到 ,获得积分10
30秒前
美满的绿蕊完成签到 ,获得积分10
31秒前
jiamso完成签到,获得积分20
31秒前
31秒前
32秒前
chloe完成签到 ,获得积分10
32秒前
英姑应助重要难摧采纳,获得10
34秒前
我是老大应助科研通管家采纳,获得10
34秒前
pb发布了新的文献求助10
34秒前
可乐应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
mhl11应助科研通管家采纳,获得10
34秒前
mhl11应助科研通管家采纳,获得10
35秒前
天天快乐应助科研通管家采纳,获得10
35秒前
Yancent应助科研通管家采纳,获得10
35秒前
zho应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
完美世界应助科研通管家采纳,获得10
35秒前
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3318350
求助须知:如何正确求助?哪些是违规求助? 2949746
关于积分的说明 8547747
捐赠科研通 2626417
什么是DOI,文献DOI怎么找? 1437176
科研通“疑难数据库(出版商)”最低求助积分说明 666172
邀请新用户注册赠送积分活动 652114