Using weighted expert judgement and nonlinear data analysis to improve Bayesian belief network models for riverine ecosystem services

生态系统服务 贝叶斯网络 判断 环境资源管理 河岸带 环境科学 生态系统 压力源 淡水生态系统 河流生态系统 计算机科学 生态学 栖息地 机器学习 医学 临床心理学 政治学 法学 生物
作者
Marcin R. Penk,Michael Bruen,Christian K. Feld,Jeremy J. Piggott,Mike Christie,Craig Bullock,Mary Kelly‐Quinn
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:851: 158065-158065 被引量:9
标识
DOI:10.1016/j.scitotenv.2022.158065
摘要

Rivers are a key part of the hydrological cycle and a vital conduit of water resources, but are under increasing threat from anthropogenic pressures. Linking pressures with ecosystem services is challenging because the processes interconnecting the physico-chemical, biological and socio-economic elements are usually captured using heterogenous methods. Our objectives were, firstly, to advance an existing proof-of-principle Bayesian belief network (BBN) model for integration of ecosystem services considerations into river management. We causally linked catchment stressors with ecosystem services using weighted evidence from an expert workshop (capturing confidence among expert groups), legislation and published literature. The BBN was calibrated with analyses of national monitoring data (including non-linear relationships and ecologically meaningful breakpoints) and expert judgement. We used a novel expected index of desirability to quantify the model outputs. Secondly, we applied the BBN to three case study catchments in Ireland to demonstrate the implications of changes in stressor levels for ecosystem services in different settings. Four out of the seven significant relationships in data analyses were non-linear, highlighting that non-linearity is common in ecosystems, but rarely considered in environmental modelling. Deficiency of riparian shading was identified as a prevalent and strong influence, which should be addressed to improve a broad range of societal benefits, particularly in the catchments where riparian shading is scarce. Sediment load had a lower influence on river biology in flashy rivers where it has less potential to settle out. Sediment interacted synergistically with organic matter and phosphate where these stressors were active; tackling these stressor pairs simultaneously can yield additional societal benefits compared to the sum of their individual influences, which highlights the value of integrated management. Our BBN model can be parametrised for other Irish catchments whereas elements of our approach, including the expected index of desirability, can be adapted globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无辜的南瓜完成签到,获得积分10
2秒前
小二郎应助xiaoyun2852采纳,获得10
3秒前
思源应助青菜采纳,获得30
3秒前
可爱的函函应助Song采纳,获得10
3秒前
4秒前
仁爱的绿海完成签到,获得积分10
4秒前
苹果花完成签到,获得积分10
6秒前
7秒前
flc1210发布了新的文献求助10
7秒前
酷波er应助宋小姐冲鸭采纳,获得10
8秒前
8秒前
8秒前
香蕉觅云应助mochen0722采纳,获得30
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
桥桥发布了新的文献求助10
9秒前
鑫鑫子发布了新的文献求助10
9秒前
清爽的丸子完成签到,获得积分10
10秒前
10秒前
Orange应助ynn采纳,获得10
10秒前
领导范儿应助madefu采纳,获得10
10秒前
bing发布了新的文献求助10
11秒前
Owen应助孟子豪采纳,获得10
11秒前
liying发布了新的文献求助10
12秒前
共享精神应助乐观的星月采纳,获得10
12秒前
12秒前
OHDJSZMS完成签到,获得积分10
12秒前
Sonny发布了新的文献求助10
12秒前
科研通AI2S应助犹豫梨愁采纳,获得10
13秒前
RR发布了新的文献求助10
13秒前
13秒前
CodeCraft应助荣荣酱采纳,获得10
14秒前
Jasper应助yu采纳,获得10
14秒前
14秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525386
求助须知:如何正确求助?哪些是违规求助? 3105990
关于积分的说明 9277903
捐赠科研通 2803436
什么是DOI,文献DOI怎么找? 1538711
邀请新用户注册赠送积分活动 716339
科研通“疑难数据库(出版商)”最低求助积分说明 709395