Using weighted expert judgement and nonlinear data analysis to improve Bayesian belief network models for riverine ecosystem services

生态系统服务 贝叶斯网络 判断 环境资源管理 河岸带 环境科学 生态系统 压力源 淡水生态系统 河流生态系统 计算机科学 生态学 栖息地 机器学习 医学 临床心理学 政治学 法学 生物
作者
Marcin R. Penk,Michael Bruen,Christian K. Feld,Jeremy J. Piggott,Mike Christie,Craig Bullock,Mary Kelly‐Quinn
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:851: 158065-158065 被引量:9
标识
DOI:10.1016/j.scitotenv.2022.158065
摘要

Rivers are a key part of the hydrological cycle and a vital conduit of water resources, but are under increasing threat from anthropogenic pressures. Linking pressures with ecosystem services is challenging because the processes interconnecting the physico-chemical, biological and socio-economic elements are usually captured using heterogenous methods. Our objectives were, firstly, to advance an existing proof-of-principle Bayesian belief network (BBN) model for integration of ecosystem services considerations into river management. We causally linked catchment stressors with ecosystem services using weighted evidence from an expert workshop (capturing confidence among expert groups), legislation and published literature. The BBN was calibrated with analyses of national monitoring data (including non-linear relationships and ecologically meaningful breakpoints) and expert judgement. We used a novel expected index of desirability to quantify the model outputs. Secondly, we applied the BBN to three case study catchments in Ireland to demonstrate the implications of changes in stressor levels for ecosystem services in different settings. Four out of the seven significant relationships in data analyses were non-linear, highlighting that non-linearity is common in ecosystems, but rarely considered in environmental modelling. Deficiency of riparian shading was identified as a prevalent and strong influence, which should be addressed to improve a broad range of societal benefits, particularly in the catchments where riparian shading is scarce. Sediment load had a lower influence on river biology in flashy rivers where it has less potential to settle out. Sediment interacted synergistically with organic matter and phosphate where these stressors were active; tackling these stressor pairs simultaneously can yield additional societal benefits compared to the sum of their individual influences, which highlights the value of integrated management. Our BBN model can be parametrised for other Irish catchments whereas elements of our approach, including the expected index of desirability, can be adapted globally.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨鸟完成签到,获得积分10
刚刚
汉堡包应助3333采纳,获得10
1秒前
wyq完成签到,获得积分10
1秒前
过时的梦寒完成签到,获得积分20
2秒前
lsktoast发布了新的文献求助10
3秒前
CipherSage应助随风采纳,获得10
4秒前
111111发布了新的文献求助10
4秒前
5秒前
Jayson完成签到,获得积分10
5秒前
5秒前
6秒前
华仔应助淡然宛凝采纳,获得10
6秒前
上官若男应助淡然宛凝采纳,获得10
6秒前
星辰大海应助淡然宛凝采纳,获得10
6秒前
BowieHuang应助淡然宛凝采纳,获得10
7秒前
小蘑菇应助淡然宛凝采纳,获得10
7秒前
科目三应助淡然宛凝采纳,获得10
7秒前
天天快乐应助淡然宛凝采纳,获得10
7秒前
领导范儿应助淡然宛凝采纳,获得10
7秒前
传奇3应助激情的含巧采纳,获得10
9秒前
所所应助干亿先采纳,获得10
9秒前
9秒前
cc321发布了新的文献求助10
9秒前
Ava应助iris2333采纳,获得10
10秒前
17784158937应助iris2333采纳,获得10
10秒前
Akim应助iris2333采纳,获得10
10秒前
我是老大应助iris2333采纳,获得10
10秒前
彭于晏应助iris2333采纳,获得10
10秒前
丘比特应助iris2333采纳,获得10
10秒前
10秒前
SciGPT应助iris2333采纳,获得10
10秒前
科研通AI6应助iris2333采纳,获得10
10秒前
ZeKaWa应助iris2333采纳,获得10
10秒前
orixero应助iris2333采纳,获得10
10秒前
10秒前
10秒前
10秒前
KIRA发布了新的文献求助10
11秒前
11秒前
Smile完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548412
求助须知:如何正确求助?哪些是违规求助? 4633745
关于积分的说明 14632589
捐赠科研通 4575424
什么是DOI,文献DOI怎么找? 2508974
邀请新用户注册赠送积分活动 1485169
关于科研通互助平台的介绍 1456179