Amorphous cobalt boride nanoparticles incorporated vanadium carbide MXene composite for asymmetric supercapacitor applications

硼化物 复合数 材料科学 超级电容器 纳米颗粒 MXenes公司 无定形固体 石墨烯 阳极 化学工程 阴极 纳米技术 冶金 复合材料 化学 电化学 电极 有机化学 物理化学 工程类
作者
Radhakrishnan Venkatkarthick,Jiaqian Qin,T. Maiyalagan
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (15): 22474-22485 被引量:12
标识
DOI:10.1002/er.8551
摘要

International Journal of Energy ResearchVolume 46, Issue 15 p. 22474-22485 RESEARCH ARTICLE Amorphous cobalt boride nanoparticles incorporated vanadium carbide MXene composite for asymmetric supercapacitor applications Radhakrishnan Venkatkarthick, Corresponding Author Radhakrishnan Venkatkarthick [email protected] orcid.org/0000-0001-5520-4236 Center of Excellence on Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand Correspondence Radhakrishnan Venkatkarthick, Center of Excellence on Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand. Email: [email protected] Thandavarayan Maiyalagan, Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India. Email: [email protected]Search for more papers by this authorJiaqian Qin, Jiaqian Qin orcid.org/0000-0002-9166-3533 Center of Excellence on Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, ThailandSearch for more papers by this authorThandavarayan Maiyalagan, Corresponding Author Thandavarayan Maiyalagan [email protected] orcid.org/0000-0003-3528-3824 Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, India Correspondence Radhakrishnan Venkatkarthick, Center of Excellence on Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand. Email: [email protected] Thandavarayan Maiyalagan, Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India. Email: [email protected]Search for more papers by this author Radhakrishnan Venkatkarthick, Corresponding Author Radhakrishnan Venkatkarthick [email protected] orcid.org/0000-0001-5520-4236 Center of Excellence on Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand Correspondence Radhakrishnan Venkatkarthick, Center of Excellence on Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand. Email: [email protected] Thandavarayan Maiyalagan, Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India. Email: [email protected]Search for more papers by this authorJiaqian Qin, Jiaqian Qin orcid.org/0000-0002-9166-3533 Center of Excellence on Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, ThailandSearch for more papers by this authorThandavarayan Maiyalagan, Corresponding Author Thandavarayan Maiyalagan [email protected] orcid.org/0000-0003-3528-3824 Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, India Correspondence Radhakrishnan Venkatkarthick, Center of Excellence on Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand. Email: [email protected] Thandavarayan Maiyalagan, Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India. Email: [email protected]Search for more papers by this author First published: 15 August 2022 https://doi.org/10.1002/er.8551 Funding information: National Science; Research and Innovation Fund (NSRF); Program Management Unit for Human Resources; Institutional Development; Research and Innovation, Grant/Award Number: B05F640153; National Research Council of Thailand (NRCT), Grant/Award Number: NRCT5-RSA63001-19 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The use of novel, low-cost, and efficient electrode materials in high-power energy technology is highly anticipated for the development of user-friendly products. Recently, “MXenes” have been identified as a novel class of advanced two-dimensional (2D) layered transition metal compounds that have piqued the interest of researchers in a variety of electrochemical applications due to their remarkable physicochemical properties that resemble other 2D materials such as graphene. Similarly, an amorphous transition metal boride compound has sparked considerable interest as a potential candidate for battery-type supercapacitor electrodes. However, the concerns about MXene layer restacking and the low electrical conductivity of metal borides limit their usefulness. Herein, we present the fabrication of a novel metal boride-MXene (CoB-V-MX) architecture using a simple one-pot chemical reduction process of cobalt boride nanoparticles and V-MXene flakes. An asymmetric hybrid supercapacitor (HSC) with activated carbon as the anode and the prepared composite as the cathode was developed. The HSC device can operate over a wider voltage range (1.6 V), distribute a high specific energy of 31.5 Wh kg−1 at a power density of 800 W kg−1, and retain up to 89.2% of its initial capacitance for up to 2500 charge-discharge cycles, demonstrating the increased possibility of designing a novel composite architecture in advanced energy storage applications. CONFLICT OF INTEREST The authors declare no conflicts of interest. Open Research DATA AVAILABILITY STATEMENT The data that support the findings of this study are available from the corresponding author upon reasonable request. REFERENCES 1Kim S, Kim G, Manthiram A. A review on infiltration techniques for energy conversion and storage devices: from fundamentals to applications, sustainable. Energy Fuel. 2021; 5: 5024-5037. 2Lai W, Ma Z, Zhang J, Yuan Y, Qiao Y, Huang H. Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: fundamental understanding and recent progress. Adv Funct Mater. 2022; 32:2111193. 3Saji VS. Review—photoelectrochemical cathodic protection in the dark: a review of nanocomposite and energy-storing photoanodes. J Electrochem Soc. 2020; 167:121505. 4Ravichandran S, Venkatkarthick R, Sankari A, Vasudevan S, Jonas Davidson D, Sozhan G. Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis – an alternate approach. Energy. 2014; 68: 148-151. 5El-Kady MF, Shao Y, Kaner RB. Graphene for batteries, supercapacitors and beyond. Nat Rev Mater. 2016; 1:16033. 6Keawploy N, Venkatkarthick R, Wangyao P, Zhang X, Liu R, Qin J. Eco-friendly conductive cotton-based textile electrodes using silver- and carbon-coated fabrics for advanced flexible supercapacitors. Energy Fuel. 2020; 34: 8977-8986. 7Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energ Environ Sci. 2014; 7: 867-884. 8Venkatkarthick R, Qin J. A new 3D composite of V2O5-based biodegradable ceramic material prepared by an environmentally friendly thermal method for supercapacitor applications. Environ Technol Innov. 2021; 22:101474. 9Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sustain Energy Rev. 2019; 101: 123-145. 10Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J. Battery-supercapacitor hybrid devices: recent Progress and future prospects. Adv Sci. 2017; 4: 1600539. 11Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017; 2:16098. 12Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy. 2017; 2:17105. 13Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chem Eng J. 2020; 388:124340. 14Das HT, Balaji TE, Dutta S, Das N, Maiyalagan T. Recent advances in MXene as electrocatalysts for sustainable energy generation: a review on surface engineering and compositing of MXene. Int J Energy Res. 2022; 46: 8625-8656. 15Syamsai R, Grace AN. Synthesis, properties and performance evaluation of vanadium carbide MXene as supercapacitor electrodes. Ceram Int. 2020; 46: 5323-5330. 16VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano. 2017; 11: 11135-11144. 17Venkatkarthick R, Rodthongkum N, Zhang X, et al. Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS Appl Energy Mater. 2020; 3: 4677-4689. 18Wang X, Lin S, Tong H, et al. Two-dimensional V4C3 MXene as high performance electrode materials for supercapacitors. Electrochim Acta. 2019; 307: 414-421. 19Wang T, Chen HC, Yu F, Zhao XS, Wang H. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Stor Mater. 2019; 16: 545-573. 20Zhao T, Yang W, Ji X, Jin W, Hu J, Li T. In-situ synthesis of expanded graphite embedded with CuO nanospheres coated with carbon for supercapacitors. Appl Surf Sci. 2018; 460: 58-64. 21Guo W, Yu C, Li S, et al. A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh-rate supercapacitors. Adv Mater. 2019; 31:1901241. 22Huang H, Wang X, Tervoort E, et al. Nano-sized structurally disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors. ACS Nano. 2018; 12: 2753-2763. 23Chen Y, Zhou T, Li L, et al. Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors. ACS Nano. 2019; 13: 9376-9385. 24Qin W, Liu Y, Liu X, Yang G. Facile and scalable production of amorphous nickel borate for high performance hybrid supercapacitors. J Mater Chem A. 2018; 6: 19689-19695. 25Hou J-F, Gao J-F, Kong L-B. Liquid phase reduction synthesis of a cobalt boride–activated carbon composite with improved specific capacitance and retention rate as a new positive electrode material for supercapacitors. New J Chem. 2019; 43: 14475-14484. 26Cao X, Wang X, Cui L, Jiang D, Zheng Y, Liu J. Strongly coupled nickel boride/graphene hybrid as a novel electrode material for supercapacitors. Chem Eng J. 2017; 327: 1085-1092. 27Chen R, Liu L, Zhou J, Hou L, Gao F. High-performance nickel-cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density. J Power Sources. 2017; 341: 75-82. 28Li W, Wang S, Wu M, Wang X, Long Y, Lou X. Direct aqueous solution synthesis of an ultra-fine amorphous nickel–boron alloy with superior pseudocapacitive performance for advanced asymmetric supercapacitors. New J Chem. 2017; 41: 7302-7311. 29Xiang C, Wang Q, Zou Y, et al. Simple synthesis of graphene-doped flower-like cobalt–nickel–tungsten–boron oxides with self-oxidation for high-performance supercapacitors. J Mater Chem A. 2017; 5: 9907-9916. 30Ayman I, Rasheed A, Ajmal S, et al. CoFe2O4 nanoparticle-decorated 2D MXene: a novel hybrid material for supercapacitor applications. Energy Fuel. 2020; 34: 7622-7630. 31Zhao K, Wang H, Zhu C, Lin S, Xu Z, Zhang X. Free-standing MXene film modified by amorphous FeOOH quantum dots for high-performance asymmetric supercapacitor. Electrochim Acta. 2019; 308: 1-8. 32Zhao K, Ma X, Lin S, Xu Z, Li L. Ambient growth of hierarchical FeOOH/MXene as enhanced electrocatalyst for oxygen evolution reaction. ChemistrySelect. 2020; 5: 1890-1895. 33Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J Am Chem Soc. 1953; 75: 215-219. 34Glavee GN, Klabunde KJ, Sorensen CM, Hadjapanayis GC. Borohydride reductions of metal ions. A new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates. Langmuir. 1992; 8: 771-773. 35Liu F, Zhou J, Wang S, et al. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J Electrochem Soc. 2017; 164: A709-A713. 36Elumeeva K, Masa J, Medina D, et al. Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst. J Mater Chem A. 2017; 5: 21122-21129. 37Yuan C, Yang L, Hou L, et al. Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv Funct Mater. 2012; 22: 2560-2566. 38Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017; 29: 7633-7644. 39Masa J, Weide P, Peeters D, et al. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv Energy Mater. 2016; 6:1502313. 40Gogotsi Y, Penner RM. Energy storage in nanomaterials – capacitive, pseudocapacitive, or battery-like? ACS Nano. 2018; 12: 2081-2083. 41Wen P, Fan M, Yang D, Wang Y, Cheng H, Wang J. An asymmetric supercapacitor with ultrahigh energy density based on nickle cobalt sulfide nanocluster anchoring multi-wall carbon nanotubes hybrid. J Power Sources. 2016; 320: 28-36. 42Brousse T, Bélanger D, Long JW. To be or not to be pseudocapacitive? J Electrochem Soc. 2015; 162: A5185-A5189. 43Guan BY, Yu L, Wang X, Song S, Lou XW. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv Mater. 2017; 29:1605051. 44Chen M, Li W, Ma W, et al. Remarkable enhancement of the electrochemical properties of Co3O4 nanowire arrays by in situ surface derivatization of an amorphous phosphate shell. J Mater Chem A. 2019; 7: 1678-1686. 45Zhang L, Dong L, Li M, Wang P, Zhang J, Lu H. Ultra-high-rate, ultra-long-life asymmetric supercapacitors based on few-crystalline, porous NiCo2O4 nanosheet composites. J Mater Chem A. 2018; 6: 1412-1422. 46Sun W, Rui X, Ulaganathan M, Madhavi S, Yan Q. Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. J Power Sources. 2015; 295: 323-328. 47Lin Z, Yan X, Lang J, Wang R, Kong L-B. Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods. J Power Sources. 2015; 279: 358-364. Volume46, Issue15December 2022Pages 22474-22485 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干不动了完成签到,获得积分10
刚刚
1秒前
啦啦啦完成签到 ,获得积分10
1秒前
cc应助研二发核心采纳,获得10
1秒前
1秒前
搜集达人应助Ray采纳,获得10
1秒前
2秒前
2秒前
3秒前
JamesPei应助thinking采纳,获得10
3秒前
5秒前
聪明小朵完成签到,获得积分10
7秒前
7秒前
墨羽发布了新的文献求助10
7秒前
lyh完成签到,获得积分10
8秒前
8秒前
WendyWen完成签到,获得积分10
11秒前
呆萌的觅松完成签到,获得积分10
13秒前
15秒前
17秒前
wandou完成签到 ,获得积分10
18秒前
Akim应助王木木采纳,获得10
18秒前
爆米花应助CNJX采纳,获得10
18秒前
宗沛柔完成签到,获得积分10
19秒前
boom发布了新的文献求助10
20秒前
落后的之桃完成签到,获得积分10
22秒前
22秒前
小蘑菇应助南宫誉采纳,获得10
22秒前
23秒前
Mars-philosopher完成签到,获得积分10
23秒前
24秒前
25秒前
pacify完成签到,获得积分10
26秒前
所所应助慕容素阴采纳,获得10
27秒前
27秒前
thinking发布了新的文献求助10
28秒前
K2L完成签到,获得积分10
28秒前
thousandlong发布了新的文献求助10
29秒前
myg8627完成签到,获得积分10
30秒前
大个应助闷声发采纳,获得10
30秒前
高分求助中
LNG地下式貯槽指針(JGA指-107-19)(Recommended practice for LNG inground storage) 1000
rhetoric, logic and argumentation: a guide to student writers 1000
QMS18Ed2 | process management. 2nd ed 1000
Eric Dunning and the Sociology of Sport 850
Operative Techniques in Pediatric Orthopaedic Surgery 510
Generalized Linear Mixed Models 第二版 500
人工地层冻结稳态温度场边界分离方法及新解答 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2920798
求助须知:如何正确求助?哪些是违规求助? 2563065
关于积分的说明 6932824
捐赠科研通 2220944
什么是DOI,文献DOI怎么找? 1180625
版权声明 588751
科研通“疑难数据库(出版商)”最低求助积分说明 577598